Display options
Share it on

Front Hum Neurosci. 2015 Mar 03;9:89. doi: 10.3389/fnhum.2015.00089. eCollection 2015.

The trajectory of gray matter development in Broca's area is abnormal in people who stutter.

Frontiers in human neuroscience

Deryk S Beal, Jason P Lerch, Brodie Cameron, Rhaeling Henderson, Vincent L Gracco, Luc F De Nil

Affiliations

  1. Department of Communication Sciences and Disorders and the Institute for Stuttering Treatment and Research, Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada ; Neuroscience and Mental Health Institute, University of Alberta Edmonton, AB, Canada.
  2. Program in Neuroscience and Mental Health, The Hospital for Sick Children Toronto, ON, Canada ; Department of Medical Biophysics, University of Toronto Toronto, ON, Canada.
  3. Department of Communication Sciences and Disorders and the Institute for Stuttering Treatment and Research, Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada.
  4. Haskins Laboratories New Haven, CT, USA ; Centre for Research on Brain, Language and Music, McGill University Montreal, QC, Canada.
  5. Department of Speech-Language Pathology, University of Toronto Toronto, ON, Canada.

PMID: 25784869 PMCID: PMC4347452 DOI: 10.3389/fnhum.2015.00089

Abstract

The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca's area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter.

Keywords: Broca’s area; cortical thickness; developmental disorders; developmental stuttering; inferior frontal gyrus; motor control; neurodevelopment; speech production

References

  1. Front Hum Neurosci. 2014 Feb 11;8:54 - PubMed
  2. Neuroimage. 2004 Sep;23(1):84-97 - PubMed
  3. Brain Topogr. 2014 Mar;27(2):240-7 - PubMed
  4. Trends Cogn Sci. 2012 Aug;16(8):418-26 - PubMed
  5. Cognition. 2004 May-Jun;92(1-2):67-99 - PubMed
  6. Neuroimage. 2008 Feb 1;39(3):1429-43 - PubMed
  7. Neuroimage. 2010 Oct 1;52(4):1495-504 - PubMed
  8. J Commun Disord. 2009 Jul-Aug;42(4):286-98 - PubMed
  9. BMC Neurol. 2004 Dec 10;4(1):23 - PubMed
  10. Neurosci Lett. 2006 Jul 10;402(1-2):195-200 - PubMed
  11. Lancet. 2002 Aug 3;360(9330):380-3 - PubMed
  12. Neuroinformatics. 2014 Jan;12(1):39-62 - PubMed
  13. J Neurosci. 2007 Jan 31;27(5):1184-9 - PubMed
  14. J Speech Lang Hear Res. 2000 Apr;43(2):521-36 - PubMed
  15. J Fluency Disord. 2003 Winter;28(4):357-79; quiz 379-80 - PubMed
  16. Brain Lang. 2014 Feb;129:24-9 - PubMed
  17. IEEE Trans Med Imaging. 1998 Aug;17(4):653-62 - PubMed
  18. Brain Lang. 2007 Jul;102(1):22-9 - PubMed
  19. Neuroimage. 2000 Sep;12(3):340-56 - PubMed
  20. Nature. 1996 Jul 11;382(6587):158-61 - PubMed
  21. J Neurosci. 2004 Sep 22;24(38):8223-31 - PubMed
  22. J Fluency Disord. 2009 Jun;34(2):61-71 - PubMed
  23. Psychol Rev. 1998 Oct;105(4):611-33 - PubMed
  24. Hum Brain Mapp. 2005 May;25(1):105-17 - PubMed
  25. Neuroimage. 2011 Feb 14;54(4):2994-3003 - PubMed
  26. J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205 - PubMed
  27. Dev Psychobiol. 2004 Jul;45(1):22-33 - PubMed
  28. J Speech Lang Hear Res. 2002 Feb;45(1):66-79 - PubMed
  29. Neuroimage. 2005 Aug 1;27(1):210-21 - PubMed
  30. J Fluency Disord. 2008 Mar;33(1):32-51 - PubMed
  31. J Neurosci. 2006 Jun 7;26(23):6314-7 - PubMed
  32. Cortex. 2013 Sep;49(8):2151-61 - PubMed
  33. Pediatrics. 2011 Jun;127(6):1034-42 - PubMed
  34. J Speech Lang Hear Res. 2002 Dec;45(6):1119-33 - PubMed
  35. PLoS One. 2012;7(7):e41830 - PubMed
  36. Nat Neurosci. 2003 Mar;6(3):309-15 - PubMed
  37. Neuroimage. 2005 Jan 1;24(1):163-73 - PubMed
  38. Brain Lang. 2009 Apr;109(1):29-48 - PubMed
  39. Neuroreport. 2007 Aug 6;18(12):1257-60 - PubMed
  40. Brain Topogr. 2013 Jul;26(3):428-41 - PubMed
  41. IEEE Trans Med Imaging. 2002 Oct;21(10):1280-91 - PubMed
  42. Brain. 2008 Jan;131(Pt 1):50-9 - PubMed
  43. J Speech Lang Hear Res. 1999 Oct;42(5):1097-112 - PubMed
  44. Nat Rev Neurosci. 2007 May;8(5):393-402 - PubMed
  45. Cereb Cortex. 2007 May;17(5):1092-9 - PubMed
  46. J Neurolinguistics. 2012 Sep 1;25(5):408-422 - PubMed
  47. J Mot Behav. 2006 May;38(3):238-46 - PubMed
  48. J Speech Lang Hear Res. 2000 Apr;43(2):548-59 - PubMed
  49. J Int Neuropsychol Soc. 2001 Mar;7(3):312-22 - PubMed
  50. Neuroimage. 2010 Oct 1;52(4):1645-53 - PubMed
  51. Exp Neurol. 2010 Jan;221(1):146-56 - PubMed
  52. Brain. 2013 Dec;136(Pt 12):3709-26 - PubMed
  53. J Comp Neurol. 1999 Sep 20;412(2):319-41 - PubMed
  54. Brain. 2007 Mar;130(Pt 3):610-22 - PubMed
  55. Brain Lang. 2008 Nov;107(2):114-23 - PubMed
  56. J Fluency Disord. 2003 Winter;28(4):273-95; quiz 295 - PubMed
  57. J Commun Disord. 2007 May-Jun;40(3):257-72 - PubMed
  58. Neuroimage. 2002 Apr;15(4):870-8 - PubMed
  59. J Commun Disord. 2006 Sep-Oct;39(5):350-65 - PubMed
  60. J Fluency Disord. 2010 Sep;35(3):246-79 - PubMed
  61. J Fluency Disord. 2012 Dec;37(4):344-58 - PubMed
  62. Dev Sci. 2008 Mar;11(2):321-37 - PubMed
  63. Psychol Rev. 1995 Jul;102(3):594-621 - PubMed
  64. J Fluency Disord. 2006;31(2):116-36 - PubMed
  65. Brain Lang. 2014 Apr;131:25-35 - PubMed
  66. Hum Brain Mapp. 2002 Nov;17(3):143-55 - PubMed
  67. Cereb Cortex. 2013 May;23(5):1190-7 - PubMed
  68. Brain. 2000 Jun;123 ( Pt 6):1184-202 - PubMed
  69. Brain. 2009 Oct;132(Pt 10):2747-60 - PubMed
  70. Cereb Cortex. 2011 Nov;21(11):2507-18 - PubMed
  71. Brain Struct Funct. 2013 Nov;218(6):1419-27 - PubMed
  72. J Fluency Disord. 2005;30(1):23-39 - PubMed
  73. Nature. 2004 Jan 22;427(6972):311-2 - PubMed
  74. Neuroimage. 2008 Feb 1;39(3):1333-44 - PubMed
  75. Neuron. 2011 Feb 10;69(3):407-22 - PubMed
  76. Med Image Anal. 2004 Sep;8(3):311-23 - PubMed
  77. Neuroimage. 2006 Aug 15;32(2):821-41 - PubMed
  78. Neurology. 2005 Oct 25;65(8):1246-52 - PubMed
  79. Nat Rev Neurosci. 2012 Jan 05;13(2):135-45 - PubMed

Publication Types

Grant support