Display options
Share it on

Biomicrofluidics. 2015 Feb 20;9(1):014124. doi: 10.1063/1.4913367. eCollection 2015 Jan.

Surface protein gradients generated in sealed microchannels using spatially varying helium microplasma.

Biomicrofluidics

Pascal Wettstein, Craig Priest, Sameer A Al-Bataineh, Robert D Short, Paul M Bryant, James W Bradley, Suet P Low, Luke Parkinson, Endre J Szili

Affiliations

  1. Mawson Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia.
  2. Ian Wark Research Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia.
  3. Department of Electrical Engineering and Electronics, The University of Liverpool , Brownlow Hill, Liverpool L69 3GJ, United Kingdom.

PMID: 25759757 PMCID: PMC4336250 DOI: 10.1063/1.4913367

Abstract

Spatially varied surface treatment of a fluorescently labeled Bovine Serum Albumin (BSA) protein, on the walls of a closed (sealed) microchannel is achieved via a well-defined gradient in plasma intensity. The microchips comprised a microchannel positioned in-between two microelectrodes (embedded in the chip) with a variable electrode separation along the length of the channel. The channel and electrodes were 50 μm and 100 μm wide, respectively, 50 μm deep, and adjacent to the channel for a length of 18 mm. The electrode separation distance was varied linearly from 50 μm at one end of the channel to a maximum distance of 150, 300, 500, or 1000 μm to generate a gradient in helium plasma intensity. Plasma ignition was achieved at a helium flow rate of 2.5 ml/min, 8.5 kVpk-pk, and 10 kHz. It is shown that the plasma intensity decreases with increasing electrode separation and is directly related to the residual amount of BSA left after the treatment. The plasma intensity and surface protein gradient, for the different electrode gradients studied, collapse onto master curves when plotted against electrode separation. This precise spatial control is expected to enable the surface protein gradient to be tuned for a range of applications, including high-throughput screening and cell-biomolecule-biomaterial interactions.

References

  1. Nat Rev Cancer. 2007 Jun;7(6):429-40 - PubMed
  2. Biomicrofluidics. 2010 Dec 06;4(4):46504 - PubMed
  3. Science. 2001 Feb 9;291(5506):1023-6 - PubMed
  4. Anal Chem. 1998 Dec 1;70(23):4974-84 - PubMed
  5. Nature. 2006 Jul 27;442(7101):387-93 - PubMed
  6. Nature. 2006 Jul 27;442(7101):394-402 - PubMed
  7. Biomed Microdevices. 2007 Oct;9(5):627-35 - PubMed
  8. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13488-93 - PubMed
  9. Nature. 2006 Jul 27;442(7101):403-11 - PubMed
  10. Biomaterials. 2008 Jan;29(2):172-84 - PubMed
  11. Nature. 2001 Oct 25;413(6858):797-803 - PubMed
  12. Langmuir. 2006 Nov 21;22(24):10291-5 - PubMed
  13. Anal Chem. 2001 Apr 15;73(8):1831-8 - PubMed
  14. Anal Chim Acta. 2011 Dec 5;708(1-2):1-10 - PubMed
  15. J Biomed Mater Res A. 2004 Dec 1;71(3):403-11 - PubMed
  16. J Immunol Methods. 2012 Oct 31;384(1-2):148-51 - PubMed
  17. Biomaterials. 2009 Feb;30(6):1066-70 - PubMed
  18. Nat Rev Mol Cell Biol. 2008 Nov;9(11):887-901 - PubMed
  19. Cytokine. 2008 Oct;44(1):1-8 - PubMed
  20. Lab Chip. 2006 Jan;6(1):74-82 - PubMed
  21. Anal Chem. 2006 Aug 1;78(15):5469-73 - PubMed
  22. Nature. 2007 Nov 8;450(7167):189-92 - PubMed
  23. Electrophoresis. 2009 Jun;30(11):1877-87 - PubMed
  24. Genes Dev. 2004 Dec 15;18(24):2985-97 - PubMed
  25. Cell. 2005 Nov 4;123(3):449-61 - PubMed
  26. Langmuir. 2008 Mar 18;24(6):2294-317 - PubMed
  27. Langmuir. 2010 Sep 7;26(17):13987-94 - PubMed
  28. Nature. 2004 Dec 23;432(7020):1050-4 - PubMed
  29. J Cell Sci. 2000 May;113 ( Pt 10):1677-86 - PubMed
  30. Curr Opin Genet Dev. 2005 Feb;15(1):77-86 - PubMed
  31. Lab Chip. 2007 Apr;7(4):523-5 - PubMed
  32. Lab Chip. 2011 Feb 7;11(3):541-4 - PubMed
  33. Nature. 2006 Jul 27;442(7101):368-73 - PubMed
  34. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12542-7 - PubMed

Publication Types