Display options
Share it on

Biomed Opt Express. 2015 Feb 19;6(3):849-58. doi: 10.1364/BOE.6.000849. eCollection 2015 Mar 01.

Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS).

Biomedical optics express

Ming Li, Yong Du, Fusheng Zhao, Jianbo Zeng, Chandra Mohan, Wei-Chuan Shih

Affiliations

  1. Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Rd., Houston, Texas 77024, USA.
  2. Department of Biomedical Engineering, University of Houston, 4800 Calhoun Rd., Houston, Texas 77024, USA.
  3. Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Rd., Houston, Texas 77024, USA ; Department of Biomedical Engineering, University of Houston, 4800 Calhoun Rd., Houston, Texas 77024, USA.

PMID: 25798309 PMCID: PMC4361439 DOI: 10.1364/BOE.6.000849

Abstract

We report a novel reagent- and separation-free method for urine creatinine concentration measurement using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates, a label-free, multiplexed molecular sensing and imaging technique recently developed by us. The performance of this new technology is evaluated by the detection and quantification of creatinine spiked in three different liquids: creatinine in water, mixture of creatinine and urea in water, and creatinine in artificial urine within physiologically relevant concentration ranges. Moreover, the potential application of our method is demonstrated by creatinine concentration measurements in urine samples collected from a mouse model of nephritis. The limit of detection of creatinine was 13.2 nM (0.15 µg/dl) and 0.68 mg/dl in water and urine, respectively. Our method would provide an alternative tool for rapid, cost-effective, and reliable urine analysis for non-invasive diagnosis and monitoring of renal function.

Keywords: (170.5660) Raman spectroscopy; (240.6695) Surface-enhanced Raman scattering; (280.1415) Biological sensing and sensors

References

  1. Appl Opt. 2014 May 1;53(13):2881-5 - PubMed
  2. Clin Chem. 1987 Jul;33(7):1129-32 - PubMed
  3. J Biomed Opt. 2008 Sep-Oct;13(5):054026 - PubMed
  4. J Biomed Opt. 2010 Mar-Apr;15(2):027004 - PubMed
  5. J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Oct 1;878(27):2582-92 - PubMed
  6. Nanoscale. 2014 Jun 7;6(11):5718-24 - PubMed
  7. J Biomed Opt. 2014;19(11):111611 - PubMed
  8. Nanoscale. 2014 Aug 7;6(15):8521-6 - PubMed
  9. Anal Chem. 2005 Nov 15;77(22):7386-92 - PubMed
  10. Opt Express. 2008 Aug 18;16(17):12737-45 - PubMed
  11. Biomed Opt Express. 2013 Oct 08;4(11):2376-82 - PubMed
  12. Clin Chem. 1989 May;35(5):835-7 - PubMed
  13. Nanoscale. 2014 Jul 21;6(14):8199-207 - PubMed
  14. Nanoscale. 2013 May 21;5(10):4105-9 - PubMed
  15. J Agric Food Chem. 2008 Jan 23;56(2):333-6 - PubMed
  16. Clin Chim Acta. 2009 Nov;409(1-2):52-5 - PubMed
  17. J Biomed Opt. 2014 May;19(5):050501 - PubMed
  18. Lasers Surg Med. 2001;28(4):330-4 - PubMed
  19. J Immunol. 2004 Apr 15;172(8):5047-55 - PubMed
  20. Nanoscale. 2014 Nov 7;6(21):12470-5 - PubMed
  21. Opt Express. 2008 Aug 18;16(17):12726-36 - PubMed
  22. Opt Lett. 2012 Apr 15;37(8):1289-91 - PubMed
  23. Small. 2012 Sep 24;8(18):2878-85 - PubMed
  24. Anal Sci. 2008 Dec;24(12):1589-92 - PubMed
  25. J Immunol. 2010 Feb 15;184(4):2183-93 - PubMed
  26. Faraday Discuss. 2006;132:321-8 - PubMed
  27. Appl Phys Lett. 2012 May 7;100(19):191114-1911145 - PubMed
  28. Analyst. 2014 Sep 7;139(17):4270-8 - PubMed

Publication Types