Display options
Share it on

Cytotechnology. 2015 May;67(3):397-408. doi: 10.1007/s10616-013-9670-3. Epub 2015 Feb 18.

Biological characteristics of muscle-derived satellite cells isolated from rats at different postnatal days.

Cytotechnology

Ren Yu, Wu Haiqing, Wang Hefei, Liu Dong, Wang Xiao, Ma Yuzhen, Liu Dongjun

Affiliations

  1. Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, Hohhot, 010021, China.

PMID: 25805267 PMCID: PMC4371568 DOI: 10.1007/s10616-013-9670-3

Abstract

This study investigated the in vitro growth characteristics and differential potential of muscle-derived satellite cells (MDSCs) derived from rats at different postnatal (P) stages, in order to expand the range of source material for tissue engineering. Rat MDSCs were isolated from P5, P10, P15, P21 and P42 rat skeletal muscles using double enzyme digestion and differential adherent culture. Neurogenic, osteogenic and myogenic induction media were used to induce directed differentiation. Differentiated nerve cells, osteoblasts and myotubes were identified by their morphology and immunohistochemical staining. Most cells transformed into spindle-shaped mononuclear cells after 48 h and proliferated rapidly. MDSCs were difficult to isolate from P42 rats. After neurogenesis, four groups MDSCs formed neuron-specific enolase positive polygonal-shaped dendritic cells. After osteogenesis, P5, P10, P15 and P21 MDSCs formed Alizarin red- and osteocalcin-positive bone nodules. After myogenesis, myotubes were formed and were fast muscle myosin-positive. MDSCs derived from P5, P10, P15 and P21 rat skeletal muscle are easy to isolate, culture and amplify in vitro, which increases the range of source material available for tissue engineering.

References

  1. BJU Int. 2008 May;101(9):1156-64 - PubMed
  2. Ther Deliv. 2011 Jul;2(7):865-71 - PubMed
  3. Nat Protoc. 2008;3(9):1501-9 - PubMed
  4. J Cell Biol. 2000 Dec 11;151(6):1221-34 - PubMed
  5. Cell Stem Cell. 2008 Sep 11;3(3):301-13 - PubMed
  6. Nature. 2008 Nov 27;456(7221):502-6 - PubMed
  7. Crit Rev Eukaryot Gene Expr. 2008;18(2):173-88 - PubMed
  8. Physiol Rev. 2005 Apr;85(2):635-78 - PubMed
  9. Age Ageing. 2010 Jul;39(4):412-23 - PubMed
  10. Mol Ther. 2007 Jun;15(6):1189-94 - PubMed
  11. Cell. 2005 Jul 29;122(2):289-301 - PubMed
  12. J Cell Mol Med. 2004 Jul-Sep;8(3):301-16 - PubMed
  13. PLoS One. 2008 Mar 12;3(3):e1789 - PubMed
  14. J Thorac Cardiovasc Surg. 1998 Nov;116(5):744-51 - PubMed
  15. Exp Cell Res. 2002 Nov 15;281(1):39-49 - PubMed
  16. Neuropsychopharmacology. 1989 Dec;2(4):281-4 - PubMed
  17. Dev Biol. 2000 Feb 15;218(2):115-24 - PubMed
  18. Polymers (Basel). 2011 Sep 1;3(3):1377-1397 - PubMed
  19. Muscle Nerve. 1983 Oct;6(8):574-80 - PubMed
  20. Dev Biol. 2010 Apr 15;340(2):330-43 - PubMed
  21. Cell Biol Int. 2012 Jun 1;36(6):579-87 - PubMed
  22. Exp Cell Res. 2008 Apr 1;314(6):1266-80 - PubMed
  23. Res Vet Sci. 2012 Aug;93(1):404-11 - PubMed
  24. Birth Defects Res C Embryo Today. 2003 Aug;69(3):230-7 - PubMed
  25. Gene Ther. 2000 Mar;7(5):428-37 - PubMed
  26. Hum Gene Ther. 2001 Apr 10;12(6):619-28 - PubMed
  27. Neuromuscul Disord. 2007 Mar;17(3):206-8 - PubMed
  28. Acta Paediatr Jpn. 1991 Apr;33(2):206-15 - PubMed
  29. J Biomed Mater Res B Appl Biomater. 2009 Feb;88(2):509-18 - PubMed
  30. Biochem Biophys Res Commun. 2007 Sep 21;361(2):342-8 - PubMed
  31. Clin Nutr. 2008 Dec;27(6):793-9 - PubMed
  32. Cell. 2007 Jun 1;129(5):999-1010 - PubMed
  33. J Cell Physiol. 2006 Jan;206(1):229-37 - PubMed
  34. Mol Ther. 2010 Aug;18(8):1501-8 - PubMed
  35. J Cell Biol. 2002 May 27;157(5):851-64 - PubMed
  36. J Neurosci Res. 2006 Jun;83(8):1502-14 - PubMed
  37. Immunogenetics. 2001 Sep;53(7):520-42 - PubMed
  38. J Am Coll Cardiol. 2007 Oct 23;50(17):1677-84 - PubMed
  39. Food Chem Toxicol. 2012 Oct;50(10):3433-9 - PubMed
  40. Nat Rev Cancer. 2002 Nov;2(11):862-71 - PubMed

Publication Types