Display options
Share it on

Mol Metab. 2015 Jan 31;4(4):277-86. doi: 10.1016/j.molmet.2015.01.006. eCollection 2015 Apr.

LKB1 and AMPKα1 are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia.

Molecular metabolism

Gao Sun, Gabriela da Silva Xavier, Tracy Gorman, Claire Priest, Antonia Solomou, David J Hodson, Marc Foretz, Benoit Viollet, Pedro-Luis Herrera, Helen Parker, Frank Reimann, Fiona M Gribble, Stephanie Migrenne, Christophe Magnan, Anna Marley, Guy A Rutter

Affiliations

  1. Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK.
  2. AstraZeneca, Alderley Edge, Cheshire, UK.
  3. Inserm, U1016, Institut Cochin, Paris, France ; CNRS, UMR8104, Paris, France ; Université Paris Descartes, Sorbonne Paris cité, Paris, France.
  4. Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
  5. Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK.
  6. University Paris Diderot-Paris 7-Unit of Functional and Adaptive Biology (BFA) EAC 7059C NRS, France.

PMID: 25830091 PMCID: PMC4354920 DOI: 10.1016/j.molmet.2015.01.006

Abstract

AIMS/HYPOTHESIS: Glucagon release from pancreatic alpha cells is required for normal glucose homoeostasis and is dysregulated in both Type 1 and Type 2 diabetes. The tumour suppressor LKB1 (STK11) and the downstream kinase AMP-activated protein kinase (AMPK), modulate cellular metabolism and growth, and AMPK is an important target of the anti-hyperglycaemic agent metformin. While LKB1 and AMPK have emerged recently as regulators of beta cell mass and insulin secretion, the role of these enzymes in the control of glucagon production in vivo is unclear.

METHODS: Here, we ablated LKB1 (αLKB1KO), or the catalytic alpha subunits of AMPK (αAMPKdKO, -α1KO, -α2KO), selectively in ∼45% of alpha cells in mice by deleting the corresponding flox'd alleles with a preproglucagon promoter (PPG) Cre.

RESULTS: Blood glucose levels in male αLKB1KO mice were lower during intraperitoneal glucose, aminoimidazole carboxamide ribonucleotide (AICAR) or arginine tolerance tests, and glucose infusion rates were increased in hypoglycemic clamps (p < 0.01). αLKB1KO mice also displayed impaired hypoglycemia-induced glucagon release. Glucose infusion rates were also elevated (p < 0.001) in αAMPKα1 null mice, and hypoglycemia-induced plasma glucagon increases tended to be lower (p = 0.06). Glucagon secretion from isolated islets was sensitized to the inhibitory action of glucose in αLKB1KO, αAMPKdKO, and -α1KO, but not -α2KO islets.

CONCLUSIONS/INTERPRETATION: An LKB1-dependent signalling cassette, involving but not restricted to AMPKα1, is required in pancreatic alpha cells for the control of glucagon release by glucose.

Keywords: AICAR, aminoimidazole carboxamide ribonucleotide; AMPK; AMPK, AMP-activated protein kinase; Alpha cell; Glucagon secretion; Knockout; LKB1; LKB1, liver kinase B1; PPG; PPG, preproglucagon promoter; T2D, Type 2 diabetes

References

  1. Am J Physiol. 1999 Aug;277(2):E283-90 - PubMed
  2. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4023-8 - PubMed
  3. Development. 2000 Jun;127(11):2317-22 - PubMed
  4. J Physiol. 2000 Nov 1;528(Pt 3):509-20 - PubMed
  5. Nature. 2002 Sep 12;419(6903):162-7 - PubMed
  6. J Clin Invest. 2003 Jan;111(1):91-8 - PubMed
  7. Biochem J. 2003 May 1;371(Pt 3):761-74 - PubMed
  8. Diabetes Nutr Metab. 2002 Oct;15(5):330-3; discussion 362 - PubMed
  9. Am J Physiol Endocrinol Metab. 2003 Apr;284(4):E671-8 - PubMed
  10. Nat Cell Biol. 2003 Apr;5(4):330-5 - PubMed
  11. EMBO J. 2004 Feb 25;23(4):833-43 - PubMed
  12. Cell Calcium. 2004 Apr;35(4):357-65 - PubMed
  13. Biochem Pharmacol. 2004 Aug 1;68(3):409-16 - PubMed
  14. Annu Rev Physiol. 1992;54:847-60 - PubMed
  15. Mol Biol Cell. 2005 Jun;16(6):2670-80 - PubMed
  16. Diabetes. 2005 May;54(5):1331-9 - PubMed
  17. Diabetes. 2005 Jun;54(6):1789-97 - PubMed
  18. Diabetes. 2005 Jun;54(6):1808-15 - PubMed
  19. Cell Metab. 2005 Jul;2(1):9-19 - PubMed
  20. Cell Metab. 2005 Jul;2(1):21-33 - PubMed
  21. Diabetes. 2006 Feb;55(2):390-7 - PubMed
  22. Endocrinology. 1991 Nov;129(5):2521-9 - PubMed
  23. J Clin Invest. 2006 Jul;116(7):1776-83 - PubMed
  24. J Biol Chem. 2006 Sep 1;281(35):25336-43 - PubMed
  25. Diabetologia. 2007 Jan;50(1):142-50 - PubMed
  26. Diabetologia. 2007 Feb;50(2):370-9 - PubMed
  27. Diabetes. 2007 Feb;56(2):320-7 - PubMed
  28. Endocr Rev. 2007 Feb;28(1):84-116 - PubMed
  29. Trends Mol Med. 2007 Jun;13(6):252-9 - PubMed
  30. FEBS Lett. 2007 Sep 4;581(22):4235-40 - PubMed
  31. Nat Rev Mol Cell Biol. 2007 Oct;8(10):774-85 - PubMed
  32. Diabetes. 2009 Feb;58(2):299-301 - PubMed
  33. Cell Metab. 2009 Apr;9(4):350-61 - PubMed
  34. Cell Metab. 2009 Oct;10(4):285-95 - PubMed
  35. Cell Metab. 2009 Oct;10(4):296-308 - PubMed
  36. Diabetologia. 2010 May;53(5):924-36 - PubMed
  37. Am J Physiol Endocrinol Metab. 2010 Jun;298(6):E1261-73 - PubMed
  38. Biochem J. 2010 Jul 15;429(2):323-33 - PubMed
  39. Diabetes. 2010 Sep;59(9):2198-208 - PubMed
  40. FASEB J. 2010 Dec;24(12):5080-91 - PubMed
  41. Diabetes. 2010 Dec;59(12):3090-8 - PubMed
  42. Diabetologia. 2011 Jan;54(1):125-34 - PubMed
  43. Diabetes. 2011 Feb;60(2):391-7 - PubMed
  44. Nature. 2011 Apr 14;472(7342):230-3 - PubMed
  45. Diabetes. 2011 Nov;60(11):2872-82 - PubMed
  46. Diabetologia. 2012 Sep;55(9):2445-55 - PubMed
  47. Nat Cell Biol. 2014 Mar;16(3):234-44 - PubMed
  48. Dis Model Mech. 2014 Nov;7(11):1275-86 - PubMed
  49. Cell Mol Life Sci. 2018 Apr;75(7):1303-1305 - PubMed
  50. Endocrinology. 1987 Jul;121(1):323-31 - PubMed
  51. Endocrinology. 1974 Oct;95(4):1005-10 - PubMed
  52. J Clin Invest. 1970 Apr;49(4):837-48 - PubMed
  53. Nutr Rev. 1997 Feb;55(2):31-43 - PubMed
  54. Nature. 1998 Jan 8;391(6663):184-7 - PubMed
  55. Diabetes. 1998 Jul;47(7):995-1005 - PubMed

Publication Types

Grant support