Display options
Share it on

Chem Phys Lett. 2015 Apr 17;626:20-24. doi: 10.1016/j.cplett.2015.03.015.

Crystal Structure Prediction from First Principles: The Crystal Structures of Glycine.

Chemical physics letters

Albert M Lund, Gabriel I Pagola, Anita M Orendt, Marta B Ferraro, Julio C Facelli

Affiliations

  1. Department of Chemistry, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, US ; Center for High Performance Computing, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, US.
  2. Departamento de FĂ­sica, and Ifiba (CONICET) Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I (1428), Buenos Aires, Argentina.
  3. Center for High Performance Computing, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, US.
  4. Center for High Performance Computing, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, US ; Department of Biomedical Informatics, University of Utah, 155 South 1452 East Room 405, Salt Lake City, UT 84112-0190, US.

PMID: 25843964 PMCID: PMC4379511 DOI: 10.1016/j.cplett.2015.03.015

Abstract

Here we present the results of our unbiased searches of glycine polymorphs obtained using the Genetic Algorithms search implemented in Modified Genetic Algorithm for Crystals coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable.

Keywords: Crystal Structure Prediction; DFT-D; glycine; polymorphs

References

  1. Chemistry. 2011 Sep 12;17(38):10736-44 - PubMed
  2. Acta Crystallogr B. 2009 Apr;65(Pt 2):107-25 - PubMed
  3. Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5616-7 - PubMed
  4. J Comput Chem. 2004 Jul 15;25(9):1157-74 - PubMed
  5. J Phys Chem A. 2012 Aug 2;116(30):8092-9 - PubMed
  6. J Comput Chem. 2006 Nov 30;27(15):1787-99 - PubMed
  7. Angew Chem Int Ed Engl. 2013 Jun 24;52(26):6629-32 - PubMed
  8. J Comput Chem. 2004 Sep;25(12):1463-73 - PubMed
  9. Acta Crystallogr B. 2005 Oct;61(Pt 5):511-27 - PubMed
  10. Acc Chem Res. 2009 Jan 20;42(1):117-26 - PubMed
  11. J Chem Phys. 2010 Apr 21;132(15):154104 - PubMed
  12. Angew Chem Int Ed Engl. 2008;47(13):2427-30 - PubMed
  13. Nat Rev Drug Discov. 2004 Jan;3(1):42-57 - PubMed
  14. J Phys Chem B. 2008 Aug 14;112(32):9810-29 - PubMed
  15. Acta Crystallogr B. 2012 Jun;68(Pt 3):215-26 - PubMed
  16. J Chem Theory Comput. 2007 Jan;3(1):201-9 - PubMed
  17. J Phys Chem B. 2005 Aug 18;109(32):15531-41 - PubMed
  18. J Comput Chem. 2009 Oct;30(13):1973-85 - PubMed
  19. Acta Crystallogr B. 2011 Dec;67(Pt 6):535-51 - PubMed

Publication Types

Grant support