Display options
Share it on

Mol Metab. 2015 Mar 05;4(5):378-91. doi: 10.1016/j.molmet.2015.02.007. eCollection 2015 May.

Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity.

Molecular metabolism

Rafael Mayoral, Olivia Osborn, Joanne McNelis, Andrew M Johnson, Da Young Oh, Cristina Llorente Izquierdo, Heekyung Chung, Pingping Li, Paqui G Traves, Gautam Bandyopadhyay, Ariane R Pessentheiner, Jachelle M Ofrecio, Joshua R Cook, Li Qiang, Domenico Accili, Jerrold M Olefsky

Affiliations

  1. Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA ; Networked Biomedical Research Center, Hepatic and Digestive Diseases (CIBERehd), Monforte de Lemos 3-5, ISC-III, 28029 Madrid, Spain.
  2. Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA.
  3. Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA.
  4. Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
  5. Institute of Biochemistry, Humboldtstrasse 46/3, 8010 Graz, Austria.
  6. Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA.

PMID: 25973386 PMCID: PMC4421024 DOI: 10.1016/j.molmet.2015.02.007

Abstract

OBJECTIVE: Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPARγ).

METHODS: To assess the specific role of SIRT1 in adipocytes, we generated Sirt1 adipocyte-specific knockout mice (ATKO) driven by aP2 promoter onto C57BL/6 background. Sirt1 (flx/flx) aP2Cre (+) (ATKO) and Sirt1 (flx/flx) aP2Cre (-) (WT) mice were fed high-fat diet for 5 weeks (short-term) or 15 weeks (chronic-term). Metabolic studies were combined with gene expression analysis and phosphorylation/acetylation patterns in adipose tissue.

RESULTS: On standard chow, ATKO mice exhibit low-grade chronic inflammation in adipose tissue, along with glucose intolerance and insulin resistance compared with control fed mice. On short-term HFD, ATKO mice become more glucose intolerant, hyperinsulinemic, insulin resistant and display increased inflammation. During chronic HFD, WT mice developed a metabolic dysfunction, higher than ATKO mice, and thereby, knockout mice are more glucose tolerant, insulin sensitive and less inflamed relative to control mice. SIRT1 attenuates adipogenesis through PPARγ repressive acetylation and, in the ATKO mice adipocyte PPARγ was hyperacetylated. This high acetylation was associated with a decrease in Ser273-PPARγ phosphorylation. Dephosphorylated PPARγ is constitutively active and results in higher expression of genes associated with increased insulin sensitivity.

CONCLUSION: Together, these data establish that SIRT1 downregulation in adipose tissue plays a previously unknown role in long-term inflammation resolution mediated by PPARγ activation. Therefore, in the context of obesity, the development of new therapeutics that activate PPARγ by targeting SIRT1 may provide novel approaches to the treatment of T2DM.

Keywords: Glucose homeostasis; Insulin resistance; Obesity; PPAR03B3; Phosphorylation; SIRT1

References

  1. Nat Med. 2013 Oct;19(10):1338-44 - PubMed
  2. Diabetes. 2013 Mar;62(3):864-74 - PubMed
  3. Mol Cell Biol. 2009 Mar;29(5):1363-74 - PubMed
  4. Science. 2013 Mar 8;339(6124):1216-9 - PubMed
  5. J Immunol. 2010 Jul 1;185(1):605-14 - PubMed
  6. Cell Metab. 2014 Jul 1;20(1):103-18 - PubMed
  7. J Biol Chem. 2007 Nov 23;282(47):34356-64 - PubMed
  8. Genes Cancer. 2013 Mar;4(3-4):125-34 - PubMed
  9. Nature. 2005 Mar 3;434(7029):113-8 - PubMed
  10. Cell. 2012 Feb 3;148(3):421-33 - PubMed
  11. Nat Med. 2013 May;19(5):557-66 - PubMed
  12. Diabetes. 2007 Dec;56(12):2910-8 - PubMed
  13. Int J Endocrinol. 2011;2011:530274 - PubMed
  14. Cell Metab. 2012 Nov 7;16(5):658-64 - PubMed
  15. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11288-93 - PubMed
  16. J Biol Chem. 2013 May 17;288(20):14046-58 - PubMed
  17. J Biol Chem. 2006 Dec 29;281(52):39915-24 - PubMed
  18. J Mol Endocrinol. 2014 Oct;53(2):191-200 - PubMed
  19. Mol Cell Biol. 2007 Jul;27(13):4698-707 - PubMed
  20. Cell Metab. 2009 Mar;9(3):277-86 - PubMed
  21. Methods Enzymol. 2014;537:1-16 - PubMed
  22. FASEB J. 2006 Jul;20(9):1540-2 - PubMed
  23. Cell. 2012 Aug 3;150(3):620-32 - PubMed
  24. J Biol Chem. 2010 Feb 5;285(6):3633-42 - PubMed
  25. Mol Cell Biol. 2009 Sep;29(17):4714-28 - PubMed
  26. Nat Rev Immunol. 2011 Feb;11(2):98-107 - PubMed
  27. Genes Dev. 2012 Feb 1;26(3):271-81 - PubMed
  28. Annu Rev Physiol. 2010;72:219-46 - PubMed
  29. Mol Cell Biol. 2008 Jan;28(1):188-200 - PubMed
  30. Nat Commun. 2014 May 28;5:3962 - PubMed
  31. J Clin Invest. 2014 Feb;124(2):515-27 - PubMed
  32. Cell. 2014 Jun 5;157(6):1339-52 - PubMed
  33. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12861-6 - PubMed
  34. Ann Med. 2011 May;43(3):198-211 - PubMed
  35. Cell Metab. 2009 Apr;9(4):327-38 - PubMed
  36. Cell Metab. 2013 Apr 2;17(4):575-85 - PubMed
  37. Arch Physiol Biochem. 2011 Jul;117(3):105-15 - PubMed
  38. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10794-9 - PubMed
  39. J Biol Chem. 2011 Sep 23;286(38):33457-65 - PubMed
  40. Annu Rev Pathol. 2010;5:253-95 - PubMed
  41. Nature. 2010 Jul 22;466(7305):451-6 - PubMed
  42. Mol Cell Endocrinol. 2010 May 5;319(1-2):99-108 - PubMed
  43. Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22504-9 - PubMed
  44. FEBS Lett. 2008 Jul 9;582(16):2417-23 - PubMed
  45. Nat Med. 2012 Sep;18(9):1407-12 - PubMed
  46. J Biol Chem. 2013 Apr 12;288(15):10722-35 - PubMed
  47. Am J Physiol Endocrinol Metab. 2010 Mar;298(3):E419-28 - PubMed
  48. Cell. 2013 Feb 14;152(4):673-84 - PubMed
  49. Nat Med. 2012 Dec;18(12):1768-77 - PubMed
  50. Nat Med. 2001 Aug;7(8):941-6 - PubMed
  51. PPAR Res. 2007;2007:95974 - PubMed
  52. Science. 2008 Dec 5;322(5907):1539-43 - PubMed
  53. Nat Commun. 2010 Apr 12;1:3 - PubMed
  54. Cell Metab. 2008 Nov;8(5):399-410 - PubMed
  55. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):303-8 - PubMed
  56. Cell Metab. 2012 Aug 8;16(2):180-8 - PubMed
  57. Mol Metab. 2014 Dec 18;4(2):118-31 - PubMed
  58. Endocrinology. 2013 Sep;154(9):3387-400 - PubMed
  59. J Clin Invest. 2012 Jul;122(7):2444-53 - PubMed
  60. Cell Metab. 2008 Oct;8(4):333-41 - PubMed
  61. J Biol Chem. 2014 Oct 17;289(42):29406-19 - PubMed
  62. ScientificWorldJournal. 2010 May 04;10:832-56 - PubMed
  63. Cell Metab. 2011 Jun 8;13(6):739-48 - PubMed
  64. Mol Pharmacol. 2008 Aug;74(2):403-12 - PubMed
  65. Cell Metab. 2007 Oct;6(4):307-19 - PubMed
  66. Cell. 2011 Nov 11;147(4):815-26 - PubMed
  67. Nature. 2004 Jun 17;429(6993):771-6 - PubMed
  68. Nat Cell Biol. 2013 Mar;15(3):302-8 - PubMed
  69. Am J Physiol Gastrointest Liver Physiol. 2008 Aug;295(2):G338-47 - PubMed
  70. Diabetes. 1998 Apr;47(4):507-14 - PubMed
  71. Diabetes. 2011 Dec;60(12):3235-45 - PubMed
  72. Obesity (Silver Spring). 2010 Mar;18(3):463-9 - PubMed
  73. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15712-7 - PubMed
  74. J Biol Chem. 2008 May 23;283(21):14230-41 - PubMed
  75. Mol Cell Endocrinol. 2011 Mar 30;335(2):166-76 - PubMed
  76. PLoS One. 2012;7(9):e46057 - PubMed
  77. Cell. 2010 Sep 3;142(5):687-98 - PubMed
  78. Cell Metab. 2008 Dec;8(6):454-7 - PubMed
  79. Trends Cardiovasc Med. 2014 Feb;24(2):81-4 - PubMed
  80. J Endocrinol. 2001 Jun;169(3):453-9 - PubMed
  81. Diabetes. 2013 Apr;62(4):1186-95 - PubMed
  82. Drug Discov Today. 2010 Sep;15(17-18):781-91 - PubMed

Publication Types

Grant support