Display options
Share it on

Am J Nucl Med Mol Imaging. 2015 Feb 15;5(3):246-58. eCollection 2015.

In vivo inflammation imaging using a CB2R-targeted near infrared fluorescent probe.

American journal of nuclear medicine and molecular imaging

Shaojuan Zhang, Pin Shao, Xiaoxi Ling, Ling Yang, Weizhou Hou, Steve H Thorne, Wissam Beaino, Carolyn J Anderson, Ying Ding, Mingfeng Bai

Affiliations

  1. Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh Pittsburgh, PA 15219, USA.
  2. Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh Pittsburgh, PA 15219, USA ; Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University Shanghai, 200032, China.
  3. Division of Surgical Oncology and Department of Immunology, University of Pittsburgh Cancer Institute Pittsburgh, PA 15213, USA.
  4. Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh Pittsburgh, PA 15219, USA ; Department of Bioengineering, University of Pittsburgh Pittsburgh, PA 15261, USA ; University of Pittsburgh Cancer Institute Pittsburgh, PA 15232, USA.
  5. Department of Biostatistics, University of Pittsburgh Pittsburgh, PA 15261, USA.

PMID: 26069858 PMCID: PMC4446393

Abstract

Chronic inflammation is considered as a critical cause of a host of disorders, such as cancer, rheumatoid arthritis, atherosclerosis, and neurodegenerative diseases, although the exact mechanism is yet to be explored. Imaging tools that can specifically target inflammation are therefore important to help reveal the role of inflammation in disease progression, and allows for developing new therapeutic strategies to ultimately improve patient care. The purpose of this study was to develop a new in vivo inflammation imaging approach by targeting the cannabinoid receptor type 2 (CB2R), an emerging inflammation biomarker, using a unique near infrared (NIR) fluorescent probe. Herein, we report the first in vivo CB2R-targeted NIR inflammation imaging study using a synthetic fluorescent probe developed in our laboratory, NIR760-mbc94. In vitro binding assay and fluorescence microscopy study indicate NIR760-mbc94 specifically binds towards CB2R in mouse RAW264.7 macrophage cells. Furthermore, in vivo imaging was performed using a Complete Freund's Adjuvant (CFA)-induced inflammation mouse model. NIR760-mbc94 successfully identified inflamed tissues and the probe uptake was blocked by a CB2R ligand, SR144528. Additionally, immunofluorescence staining in cryosectioned tissues validated the NIR760-mbc94 uptake in inflamed tissues. In conclusion, this study reports the first in vivo CB2R-targeted inflammation imaging using an NIR fluorescent probe. Specific targeting of NIR760-mbc94 has been demonstrated in macrophage cells, as well as a CFA-induced inflammation mouse model. The combined evidence indicates that NIR760-mbc94 is a promising inflammation imaging probe. Moreover, in vivo CB2R-targeted fluorescence imaging may have potential in the study of inflammation-related diseases.

Keywords: CB2; Inflammation; cannabinoid receptor; fluorescent probe; near infrared; optical imaging

References

  1. Nucl Med Biol. 2012 Apr;39(3):389-99 - PubMed
  2. Nat Rev Clin Oncol. 2011 Sep 27;8(11):677-88 - PubMed
  3. Nanomedicine (Lond). 2008 Oct;3(5):703-17 - PubMed
  4. J Neurochem. 2005 Oct;95(2):437-45 - PubMed
  5. Nat Mater. 2014 Feb;13(2):125-38 - PubMed
  6. Biomaterials. 2014 Jun;35(18):4958-68 - PubMed
  7. Surg Endosc. 2015 Jul;29(7):2046-55 - PubMed
  8. Bioconjug Chem. 2008 May;19(5):988-92 - PubMed
  9. Bioorg Med Chem Lett. 2005 Aug 15;15(16):3758-62 - PubMed
  10. Bioconjug Chem. 2013 Nov 20;24(11):1907-16 - PubMed
  11. Circulation. 2006 Jul 4;114(1):55-62 - PubMed
  12. Br J Pharmacol. 2011 Jan;162(2):428-40 - PubMed
  13. Brain. 2004 Jul;127(Pt 7):1670-7 - PubMed
  14. Circulation. 2008 Oct 28;118(18):1802-9 - PubMed
  15. Br J Pharmacol. 2010 Jun;160(3):480-98 - PubMed
  16. J Am Chem Soc. 2010 Feb 17;132(6):2016-23 - PubMed
  17. Mol Imaging Biol. 2013 Jun;15(3):282-9 - PubMed
  18. J Biomed Opt. 2013 Oct;18(10):101312 - PubMed
  19. Curr Opin Chem Biol. 2003 Oct;7(5):626-34 - PubMed
  20. Cancer Metastasis Rev. 2006 Sep;25(3):481-91 - PubMed
  21. J Am Coll Cardiol. 2011 Jun 21;57(25):2516-26 - PubMed
  22. PLoS One. 2014 Jul 29;9(7):e103721 - PubMed
  23. Science. 2005 Oct 14;310(5746):329-32 - PubMed
  24. Bioorg Med Chem. 2010 Jul 15;18(14 ):5202-7 - PubMed
  25. Int J Immunopathol Pharmacol. 2010 Jan-Mar;23(1):25-34 - PubMed
  26. Curr Med Chem. 2012;19(21):3457-74 - PubMed
  27. Bioorg Med Chem. 2011 Aug 1;19(15):4499-505 - PubMed
  28. Anal Biochem. 2011 May 1;412(1):85-91 - PubMed
  29. Eur J Biochem. 1995 Aug 15;232(1):54-61 - PubMed
  30. Curr Med Chem. 2012;19(28):4742-58 - PubMed
  31. Circulation. 2008 Jan 22;117(3):379-87 - PubMed
  32. Curr Drug Targets Inflamm Allergy. 2005 Jun;4(3):281-6 - PubMed
  33. J Neuroimmune Pharmacol. 2013 Mar;8(1):323-32 - PubMed
  34. Inflamm Allergy Drug Targets. 2013 Oct;12(5):349-61 - PubMed
  35. Chem Commun (Camb). 2014 Jun 25;50(50):6589-91 - PubMed
  36. J Leukoc Biol. 2003 Oct;74(4):486-96 - PubMed
  37. Theranostics. 2013 Jun 24;3(7):448-66 - PubMed
  38. Nature. 2008 Jul 24;454(7203):427 - PubMed
  39. Int Immunopharmacol. 2005 Jun;5(6):1049-56 - PubMed
  40. Circulation. 2007 Dec 11;116(24):2841-50 - PubMed

Publication Types

Grant support