Display options
Share it on

Front Bioeng Biotechnol. 2015 May 06;3:52. doi: 10.3389/fbioe.2015.00052. eCollection 2015.

High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products.

Frontiers in bioengineering and biotechnology

Melissa Sgarioto, Raju Adhikari, Pathiraja A Gunatillake, Tim Moore, John Patterson, Marie-Danielle Nagel, François Malherbe

Affiliations

  1. Faculty of Life and Social Sciences, Swinburne University of Technology , Hawthorn, VIC , Australia ; UMR CNRS 7338 Biomécanique et Bioingénierie, Centre de Recherches de Royallieu, Université de Technologie de Compiègne , Compiègne , France.
  2. CSIRO Manufacturing Flagship , Clayton, VIC , Australia.
  3. PolyNovo Biomaterials Pty Ltd. , Port Melbourne, VIC , Australia.
  4. Faculty of Life and Social Sciences, Swinburne University of Technology , Hawthorn, VIC , Australia.
  5. UMR CNRS 7338 Biomécanique et Bioingénierie, Centre de Recherches de Royallieu, Université de Technologie de Compiègne , Compiègne , France.

PMID: 26000274 PMCID: PMC4422008 DOI: 10.3389/fbioe.2015.00052

Abstract

We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%.

Keywords: cardiovascular stents; cytotoxicity; degradation; polyurethane; properties

References

  1. J Biomed Mater Res A. 2006 May;77(2):304-12 - PubMed
  2. Circulation. 2012 May 15;125(19):2343-53 - PubMed
  3. J Biomed Mater Res. 1993 Oct;27(10 ):1341-8 - PubMed
  4. Biomaterials. 2011 Jan;32(2):419-29 - PubMed
  5. J Burn Care Res. 2009 Jul-Aug;30(4):717-28 - PubMed
  6. Am J Obstet Gynecol. 1985 Mar 15;151(6):798-800 - PubMed
  7. Tissue Eng. 2002 Oct;8(5):771-85 - PubMed
  8. Tissue Eng Part A. 2008 Mar;14(3):369-78 - PubMed
  9. Biomaterials. 2008 Mar;29(7):825-33 - PubMed
  10. Eur J Vasc Endovasc Surg. 1996 Oct;12 (3):321-30 - PubMed
  11. Biomaterials. 1990 May;11(4):291-5 - PubMed
  12. Biomaterials. 2008 Jul;29(20):2941-53 - PubMed
  13. J Biomed Mater Res B Appl Biomater. 2014 Nov;102(8):1711-9 - PubMed
  14. Biotechnol Annu Rev. 2006;12:301-47 - PubMed
  15. Biomaterials. 2007 Dec;28(36):5407-17 - PubMed
  16. PLoS One. 2010 Apr 06;5(4):e10051 - PubMed
  17. J Biomed Mater Res. 1989 Dec;23(A3 Suppl):311-9 - PubMed
  18. Pharm Res. 2008 Oct;25(10):2387-99 - PubMed
  19. Heart. 2003 Jun;89(6):651-6 - PubMed
  20. Tissue Eng. 2006 Jul;12 (7):1945-53 - PubMed
  21. Lancet. 2015 Jan 3;385(9962):10-2 - PubMed
  22. Cathet Cardiovasc Diagn. 1998 Oct;45(2):202-7 - PubMed
  23. Biomaterials. 2000 Jun;21(12):1247-58 - PubMed
  24. J Biomed Mater Res A. 2003 Feb 1;64(2):242-8 - PubMed
  25. J Mater Sci Mater Med. 2010 Apr;21(4):1081-9 - PubMed
  26. Biomaterials. 2004 Jan;25(1):85-96 - PubMed
  27. J Biomed Mater Res A. 2006 Feb;76(2):377-85 - PubMed
  28. J Biomed Mater Res A. 2008 Jun 15;85(4):972-82 - PubMed
  29. Biochim Biophys Acta. 2008 Jul-Aug;1780(7-8):995-1003 - PubMed
  30. Med Device Technol. 1995 Apr;6(3):7-10 - PubMed
  31. Ann Plast Surg. 1992 Apr;28(4):342-53 - PubMed
  32. J Am Coll Cardiol. 2011 Oct 4;58(15):1578-88 - PubMed
  33. J Biomed Mater Res. 2002 Sep 5;61(3):493-503 - PubMed
  34. Biomaterials. 2005 May;26(13):1457-66 - PubMed
  35. Biomaterials. 2007 Jan;28(3):423-33 - PubMed
  36. Acta Biomater. 2009 Jul;5(6):1991-2001 - PubMed
  37. Circulation. 2006 Aug 22;114(8):820-9 - PubMed
  38. J Biomed Mater Res A. 2008 Mar 15;84(4):847-55 - PubMed
  39. J Biomed Mater Res. 1997 Jul;36(1):65-74 - PubMed
  40. J Biomater Sci Polym Ed. 1999;10 (10 ):1015-45 - PubMed
  41. J Biomed Mater Res A. 2007 Sep 1;82(3):669-79 - PubMed
  42. J Biomed Mater Res. 2000 Sep 15;51(4):761-70 - PubMed
  43. Biomed Mater. 2008 Dec;3(4):044104 - PubMed
  44. J Control Release. 2007 Jul 16;120(1-2):70-8 - PubMed
  45. Eur Cell Mater. 2003 May 20;5:1-16; discussion 16 - PubMed
  46. J Biomater Sci Polym Ed. 2010;21(6-7):843-62 - PubMed
  47. Int J Cardiovasc Intervent. 2003;5(1):13-6 - PubMed
  48. Biotechnol Appl Biochem. 2009 Jan;52(Pt 1):1-8 - PubMed
  49. Tissue Eng Part B Rev. 2008 Mar;14(1):3-17 - PubMed
  50. J Surg Res. 1996 Feb 1;60(2):327-32 - PubMed
  51. Int J Mol Sci. 2011;12(7):4250-70 - PubMed
  52. Biopolymers. 2010 Aug;93(8):690-707 - PubMed
  53. Biomaterials. 2008 Oct;29(28):3762-70 - PubMed
  54. C R Biol. 2012 Aug;335(8):520-8 - PubMed
  55. Br J Surg. 1989 Dec;76(12):1259-61 - PubMed

Publication Types