Display options
Share it on

Front Plant Sci. 2015 Jun 11;6:442. doi: 10.3389/fpls.2015.00442. eCollection 2015.

Development and regulation of pedicel abscission in tomato.

Frontiers in plant science

Yasuhiro Ito, Toshitsugu Nakano

Affiliations

  1. Food Biotechnology Division, National Food Research Institute, National Agriculture and Food Research Organization , Tsukuba, Japan.

PMID: 26124769 PMCID: PMC4462994 DOI: 10.3389/fpls.2015.00442

Abstract

To shed unfertilized flowers or ripe fruits, many plant species develop a pedicel abscission zone (AZ), a specialized tissue that develops between the organ and the main body of the plant. Regulation of pedicel abscission is an important agricultural concern because pre-harvest abscission can reduce yields of fruit or grain crops, such as apples, rice, wheat, etc. Tomato has been studied as a model system for abscission, as tomato plants develop a distinct AZ at the midpoint of the pedicel and several tomato mutants, such as jointless, have pedicels that lack an AZ. This mini-review focuses on recent advances in research on the mechanisms regulating tomato pedicel abscission. Molecular genetic studies revealed that three MADS-box transcription factors interactively play a central role in pedicel AZ development. Transcriptome analyses identified activities involved in abscission and also found novel transcription factors that may regulate AZ activities. Another study identified transcription factors mediating abscission pathways from induction signals to activation of cell wall hydrolysis. These recent findings in tomato will enable significant advances in understanding the regulation of abscission in other key agronomic species.

Keywords: ERF; MADS-box; abscission; pedicel; tomato

References

  1. J Exp Bot. 2011 Jun;62(10):3481-8 - PubMed
  2. Plant Cell. 2006 Mar;18(3):598-611 - PubMed
  3. Annu Rev Plant Biol. 2002;53:131-58 - PubMed
  4. Cell. 2006 Dec 29;127(7):1309-21 - PubMed
  5. Plant Physiol. 1998 Mar;116(3):891-9 - PubMed
  6. Plant Cell. 2011 Nov;23(11):4146-63 - PubMed
  7. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1064-9 - PubMed
  8. Development. 2009 Mar;136(5):823-32 - PubMed
  9. J Exp Bot. 2007;58(12):3395-406 - PubMed
  10. Genes Dev. 2003 May 1;17(9):1175-87 - PubMed
  11. BMC Plant Biol. 2013 Mar 09;13:40 - PubMed
  12. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):290-5 - PubMed
  13. Plant Physiol. 2001 Jun;126(2):494-500 - PubMed
  14. J Exp Bot. 2009;60(12):3521-30 - PubMed
  15. Plant Cell. 2011 Jul;23(7):2553-67 - PubMed
  16. Plant Cell Physiol. 2015 Jun;56(6):1097-106 - PubMed
  17. J Exp Bot. 2014 Jul;65(12):3111-9 - PubMed
  18. Genome Biol. 2009 Feb 25;10(2):R24 - PubMed
  19. Cell. 1998 Dec 11;95(6):805-15 - PubMed
  20. PLoS One. 2014 Mar 13;9(3):e91016 - PubMed
  21. Nat Genet. 2012 May 13;44(6):720-4 - PubMed
  22. Science. 2006 Mar 31;311(5769):1936-9 - PubMed
  23. Plant Physiol. 2008 Mar;146(3):1305-21 - PubMed
  24. Plant J. 2014 Jan;77(2):284-96 - PubMed
  25. Planta. 1984 Feb;160(2):159-63 - PubMed
  26. Plant Cell. 1999 Feb;11(2):159-75 - PubMed
  27. J Exp Bot. 2012 Jan;63(2):797-807 - PubMed
  28. Science. 2002 Apr 12;296(5566):343-6 - PubMed
  29. Plant Physiol. 2012 Jan;158(1):439-50 - PubMed
  30. PLoS One. 2013;8(2):e55238 - PubMed
  31. Plant J. 2009 Nov;60(4):626-37 - PubMed
  32. Plant Sci. 2014 Dec;229:86-95 - PubMed
  33. Science. 2008 Dec 19;322(5909):1835-9 - PubMed
  34. PLoS One. 2015 Mar 30;10(3):e0120563 - PubMed
  35. Plant J. 2000 Feb;21(4):351-60 - PubMed
  36. J Exp Bot. 2008;59(8):2253-65 - PubMed
  37. Chromosoma. 2005 Jul;114(2):103-17 - PubMed
  38. Plant Physiol. 2015 Mar;167(3):844-53 - PubMed
  39. Nature. 2000 Aug 24;406(6798):910-3 - PubMed
  40. Plant Cell. 1997 Jun;9(6):841-57 - PubMed
  41. Plant Physiol. 2010 Dec;154(4):1929-56 - PubMed

Publication Types