Display options
Share it on

Skelet Muscle. 2015 Jul 15;5:21. doi: 10.1186/s13395-015-0047-5. eCollection 2015.

Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay.

Skeletal muscle

H Robert Bergen, Joshua N Farr, Patrick M Vanderboom, Elizabeth J Atkinson, Thomas A White, Ravinder J Singh, Sundeep Khosla, Nathan K LeBrasseur

Affiliations

  1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.
  2. Medical Genome Facility-Proteomics Core, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.
  3. Division of Endocrinology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.
  4. Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.
  5. Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.
  6. Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA.
  7. Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA.

PMID: 26180626 PMCID: PMC4502935 DOI: 10.1186/s13395-015-0047-5

Abstract

BACKGROUND: Myostatin is a protein synthesized and secreted by skeletal muscle that negatively regulates muscle mass. The extent to which circulating myostatin levels change in the context of aging is controversial, largely due to methodological barriers.

METHODS: We developed a specific and sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay to measure concentrations of myostatin and two of its key inhibitors, follistatin-related gene (FLRG) protein and growth and serum protein-1 (GASP-1) in 80 younger (<40 years), 80 older (>65 years), and 80 sarcopenic older women and men.

RESULTS: Older women had 34 % higher circulating concentrations of myostatin than younger women. Per unit of lean mass, both older and sarcopenic older women had >23 % higher myostatin levels than younger women. By contrast, younger men had higher myostatin concentrations than older men with and without sarcopenia. Younger men had approximately twofold higher concentrations of myostatin than younger women; however, older women and sarcopenic older women had significantly higher relative myostatin levels than the corresponding groups of men. In both sexes, sarcopenic older subjects had the highest concentrations of FLRG. Circulating concentrations of myostatin exhibited positive, but not robust, correlations with relative muscle mass in both sexes.

CONCLUSIONS: Our data suggest that myostatin may contribute to the higher prevalence of sarcopenia in women but acts as a homeostatic regulator of muscle mass in men. Moreover, this new LC-MS/MS-based approach offers a means to determine the extent to which myostatin serves as a biomarker of muscle health in diverse conditions of muscle loss and deterioration.

Keywords: Aging; Body composition; Myostatin; Sarcopenia; Skeletal muscle mass; Strength

References

  1. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15842-6 - PubMed
  2. Biol Rev Camb Philos Soc. 1962 Aug;37:307-42 - PubMed
  3. J Nutr Health Aging. 2002;6(5):343-8 - PubMed
  4. J Bone Miner Res. 2012 Oct;27(10):2159-69 - PubMed
  5. J Bone Miner Res. 2006 Dec;21(12):1847-55 - PubMed
  6. J Gerontol A Biol Sci Med Sci. 2011 Jun;66(6):620-6 - PubMed
  7. Gerontology. 2014;60(4):289-93 - PubMed
  8. J Clin Invest. 2008 Feb;118(2):421-8 - PubMed
  9. Clin Chim Acta. 2012 Aug 16;413(15-16):1288-94 - PubMed
  10. J Clin Endocrinol Metab. 2012 Oct;97(10):3700-8 - PubMed
  11. Hum Reprod. 2012 Aug;27(8):2476-83 - PubMed
  12. Dev Biol. 2005 Jul 1;283(1):58-69 - PubMed
  13. Mol Cell Endocrinol. 2010 Dec 15;330(1-2):1-9 - PubMed
  14. Mol Cell Endocrinol. 2009 Apr 10;302(1):26-32 - PubMed
  15. Osteoporos Int. 2008 Oct;19(10):1465-71 - PubMed
  16. Am J Phys Med Rehabil. 2014 Nov;93(11 Suppl 3):S88-96 - PubMed
  17. J Bone Miner Res. 2011 Feb;26(2):373-9 - PubMed
  18. FASEB J. 2011 May;25(5):1653-63 - PubMed
  19. Mol Endocrinol. 2003 Jun;17(6):1144-54 - PubMed
  20. J Proteome Res. 2014 Jun 30;:null - PubMed
  21. Mol Cell Endocrinol. 2010 Apr 12;317(1-2):25-30 - PubMed
  22. Am J Physiol Cell Physiol. 2009 Jun;296(6):C1258-70 - PubMed
  23. J Biol Chem. 2008 Mar 14;283(11):7027-35 - PubMed
  24. Am J Physiol Cell Physiol. 2009 Jun;296(6):C1248-57 - PubMed
  25. Mech Dev. 1999 Feb;80(2):185-9 - PubMed
  26. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12457-61 - PubMed
  27. Clin Endocrinol (Oxf). 2011 Dec;75(6):857-63 - PubMed
  28. Nature. 2002 Nov 28;420(6914):418-21 - PubMed
  29. Med Sci Sports Exerc. 2000 Sep;32(9 Suppl):S498-504 - PubMed
  30. Neuromuscul Disord. 2007 Oct;17(9-10):721-2 - PubMed
  31. Nature. 1997 May 1;387(6628):83-90 - PubMed
  32. J Cell Physiol. 1999 Jul;180(1):1-9 - PubMed
  33. J Clin Endocrinol Metab. 1998 Jul;83(7):2266-74 - PubMed
  34. J Biol Chem. 2002 Oct 25;277(43):40735-41 - PubMed
  35. Biochem Biophys Res Commun. 2003 Jan 24;300(4):965-71 - PubMed
  36. J Am Med Dir Assoc. 2011 May;12(4):249-56 - PubMed
  37. Muscle Nerve. 2013 Mar;47(3):416-23 - PubMed
  38. Agents Actions. 1971 Apr;2(1):1-7 - PubMed
  39. J Gerontol A Biol Sci Med Sci. 2009 Sep;64(9):940-8 - PubMed
  40. Curr Opin Genet Dev. 1999 Oct;9(5):604-7 - PubMed
  41. Am J Epidemiol. 1978 Sep;108(3):161-75 - PubMed
  42. Curr Opin Support Palliat Care. 2013 Dec;7(4):352-60 - PubMed

Publication Types

Grant support