Display options
Share it on

Bladder (San Franc). 2015;2(1):e9. doi: 10.14440/bladder.2015.33.

The human urothelial tight junction: claudin 3 and the ZO-1α.

Bladder (San Francisco, Calif.)

Nicholas J Smith, Jennifer Hinley, Claire L Varley, Ian Eardley, Ludwik K Trejdosiewicz, Jennifer Southgate

Affiliations

  1. Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom ; Pyrah Department of Urology, St James's University Hospital, Leeds LS9 7TF, United Kingdom.
  2. Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom.
  3. Pyrah Department of Urology, St James's University Hospital, Leeds LS9 7TF, United Kingdom.

PMID: 26269793 PMCID: PMC4530542 DOI: 10.14440/bladder.2015.33

Abstract

OBJECTIVE: Tight junctions are multicomponent structures, with claudin proteins defining paracellular permeability. Claudin 3 is a candidate for the exceptional "tightness" of human urothelium, being localised to the terminal tight junction (TJ) of superficial cells. Our aim was to determine whether claudin 3 plays an instigating and/or a functional role in the urothelial TJ.

MATERIALS AND METHODS: Normal human urothelial (NHU) cells maintained as non-immortalised cell lines were retrovirally-transduced to over-express or silence claudin 3 expression. Stable sublines induced to stratify or differentiate were assessed for TJ formation by immunocytochemistry and transepithelial electrical resistance (TER). Expression of claudin 3, ZO-1 and ZO-1α

RESULTS: Claudin 3 expression was associated with differentiation and development of a tight barrier and along with ZO-1 and ZO-1α

CONCLUSIONS: Urothelial cytodifferentiation is accompanied by induction of claudin 3 which is essential for the development of a terminal TJ. A coordinated switch to the ZO-1α

Keywords: claudin; differentiation; tight junction; urothelium; zonula occludens

References

  1. J Biol Chem. 2002 Mar 1;277(9):7412-9 - PubMed
  2. J Cell Sci. 2010 Jun 1;123(Pt 11):1913-21 - PubMed
  3. Nat New Biol. 1972 Jan 5;235(53):9-13 - PubMed
  4. J Cell Biol. 2001 Apr 16;153(2):263-72 - PubMed
  5. Biochim Biophys Acta. 2005 May 15;1669(1):34-42 - PubMed
  6. BJU Int. 2007 Jun;99(6):1506-16 - PubMed
  7. J Comp Pathol. 2012 Jul;147(1):11-9 - PubMed
  8. Lab Invest. 1994 Oct;71(4):583-94 - PubMed
  9. Int J Cancer. 2005 Sep 10;116(4):634-9 - PubMed
  10. J Formos Med Assoc. 2014 Jan;113(1):17-22 - PubMed
  11. Cell. 2006 Aug 25;126(4):741-54 - PubMed
  12. In Vitro Cell Dev Biol Anim. 2008 Jul-Aug;44(7):261-7 - PubMed
  13. Nat Protoc. 2008;3(6):1101-8 - PubMed
  14. Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1158-68 - PubMed
  15. Mol Biol Cell. 2009 Sep;20(17 ):3930-40 - PubMed
  16. Oncogene. 2006 Aug 17;25(36):5037-45 - PubMed
  17. Eur Urol. 2011 Jul;60(1):141-9 - PubMed
  18. Acta Neuropathol. 2003 Jun;105(6):586-92 - PubMed
  19. Am J Physiol Cell Physiol. 2004 Apr;286(4):C913-22 - PubMed
  20. Am J Physiol Renal Physiol. 2004 Aug;287(2):F305-18 - PubMed
  21. Am J Physiol Renal Physiol. 2005 Aug;289(2):F459-68 - PubMed
  22. J Urol. 2005 Dec;174(6):2382-7 - PubMed
  23. Proc Am Thorac Soc. 2004;1(1):38-41 - PubMed
  24. Am J Physiol Renal Physiol. 2002 Dec;283(6):F1200-7 - PubMed
  25. J Cell Biol. 1965 Jul;26(1):25-48 - PubMed
  26. Cold Spring Harb Perspect Biol. 2009 Aug;1(2):a002584 - PubMed
  27. Biochim Biophys Acta. 2010 Nov;1798(11):2048-57 - PubMed
  28. PLoS One. 2012;7(12):e52272 - PubMed
  29. Am J Physiol. 1996 Oct;271(4 Pt 2):F886-94 - PubMed
  30. Br J Urol. 1983 Oct;55(5):488-92 - PubMed
  31. J Cell Physiol. 2006 Aug;208(2):407-17 - PubMed
  32. Dev Biol. 2014 Feb 15;386(2):321-30 - PubMed
  33. Urology. 2012 Jul;80(1):225.e13-8 - PubMed
  34. Methods Mol Biol. 2011;763:207-22 - PubMed

Publication Types

Grant support