Display options
Share it on

Front Microbiol. 2015 Jul 01;6:654. doi: 10.3389/fmicb.2015.00654. eCollection 2015.

Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant.

Frontiers in microbiology

Brandon Brooks, Ryan S Mueller, Jacque C Young, Michael J Morowitz, Robert L Hettich, Jillian F Banfield

Affiliations

  1. Department of Earth and Planetary Sciences, University of California, Berkeley Berkeley, CA, USA.
  2. Department of Earth and Planetary Sciences, University of California, Berkeley Berkeley, CA, USA ; Department of Microbiology, Oregon State University Corvallis, OR, USA.
  3. Department of Genome Sciences and Technology, The University of Tennessee, Knoxville Knoxville, TN, USA ; Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA.
  4. Department of Surgery, University of Pittsburgh School of Medicine Pittsburgh, PA, USA.

PMID: 26191049 PMCID: PMC4487087 DOI: 10.3389/fmicb.2015.00654

Abstract

While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13-21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

Keywords: colonization; infant gut; metaproteomics; microbial ecology; microbiome; physiology

References

  1. J Bacteriol. 2004 Apr;186(7):2099-106 - PubMed
  2. Annu Rev Microbiol. 2006;60:131-47 - PubMed
  3. Anal Chem. 2002 Apr 1;74(7):1650-7 - PubMed
  4. J Pediatr. 2014 Jan;164(1):61-6 - PubMed
  5. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1128-33 - PubMed
  6. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11971-5 - PubMed
  7. Pediatrics. 2006 Aug;118(2):511-21 - PubMed
  8. Science. 2013 Feb 1;339(6119):548-54 - PubMed
  9. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2329-38 - PubMed
  10. Science. 2005 Jun 24;308(5730):1915-20 - PubMed
  11. PLoS One. 2014 Mar 10;9(3):e90784 - PubMed
  12. Cell. 2013 Jan 17;152(1-2):39-50 - PubMed
  13. BMC Bioinformatics. 2007 Oct 17;8:398 - PubMed
  14. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  15. Microbiome. 2014 Jan 28;2(1):1 - PubMed
  16. Microbiome. 2014 Oct 13;2:38 - PubMed
  17. Nucleic Acids Res. 2000 Jan 1;28(1):304-5 - PubMed
  18. Semin Pediatr Surg. 2013 May;22(2):83-7 - PubMed
  19. Adv Immunol. 2014;121:91-119 - PubMed
  20. Infect Immun. 2007 Oct;75(10):4891-9 - PubMed
  21. Nature. 2006 Dec 21;444(7122):1027-31 - PubMed
  22. PLoS One. 2012;7(11):e49138 - PubMed
  23. Trends Microbiol. 2015 Jan;23(1):22-34 - PubMed
  24. Inflamm Bowel Dis. 2012 Apr;18(4):649-56 - PubMed
  25. Gastroenterology. 2014 Nov;147(5):1055-63.e8 - PubMed
  26. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85 - PubMed
  27. Trends Microbiol. 2012 Jan;20(1):30-9 - PubMed
  28. Cell. 2013 Dec 19;155(7):1451-63 - PubMed
  29. Clin Microbiol Rev. 2012 Oct;25(4):661-81 - PubMed
  30. World J Gastroenterol. 2014 Feb 7;20(5):1192-210 - PubMed
  31. Cell Host Microbe. 2010 Jul 22;8(1):2-6 - PubMed
  32. Neurogastroenterol Motil. 2013 Sep;25(9):733-e575 - PubMed
  33. Nature. 2007 Mar 29;446(7135):537-41 - PubMed
  34. CMAJ. 2013 Mar 19;185(5):373-4 - PubMed
  35. EMBO Rep. 2013 Apr;14(4):319-27 - PubMed
  36. Front Pediatr. 2015 Mar 05;3:17 - PubMed
  37. Genome Res. 2013 Jan;23(1):111-20 - PubMed
  38. Cell. 2013 Feb 14;152(4):884-94 - PubMed
  39. Front Cell Infect Microbiol. 2012 Oct 16;2:94 - PubMed
  40. N Engl J Med. 1992 May 7;326(19):1233-9 - PubMed
  41. ISME J. 2009 Feb;3(2):179-89 - PubMed
  42. Nat Rev Microbiol. 2010 Dec;8(12):843-8 - PubMed
  43. Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 - PubMed
  44. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3047-52 - PubMed

Publication Types

Grant support