Display options
Share it on

Clin Epigenetics. 2015 Jul 28;7:76. doi: 10.1186/s13148-015-0112-2. eCollection 2015.

DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations.

Clinical epigenetics

Amit Sharma, Muhammad Ahmer Jamil, Nicole Nuesgen, Felix Schreiner, Lutz Priebe, Per Hoffmann, Stefan Herns, Markus M Nöthen, Holger Fröhlich, Johannes Oldenburg, Joachim Woelfle, Osman El-Maarri

Affiliations

  1. Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany.
  2. Pediatric Endocrinology Division, Children's Hospital, University of Bonn, Bonn, Germany.
  3. Institute of Human Genetics, University of Bonn, Bonn, Germany.
  4. Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.
  5. Institute for Computer Science, c/o Bonn-Aachen International Center for IT, Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany.

PMID: 26221191 PMCID: PMC4517491 DOI: 10.1186/s13148-015-0112-2

Abstract

BACKGROUND: Abnormal sex chromosome numbers in humans are observed in Turner (45,X) and Klinefelter (47,XXY) syndromes. Both syndromes are associated with several clinical phenotypes, whose molecular mechanisms are obscure, and show a range of inter-individual penetrance. In order to understand the effect of abnormal numbers of X chromosome on the methylome and its correlation to the variable clinical phenotype, we performed a genome-wide methylation analysis using MeDIP and Illumina's Infinium assay on individuals with four karyotypes: 45,X, 46,XY, 46,XX, and 47,XXY.

RESULTS: DNA methylation changes were widespread on all autosomal chromosomes in 45,X and in 47,XXY individuals, with Turner individuals presenting five times more affected loci. Differentially methylated CpGs, in most cases, have intermediate methylation levels and tend to occur outside CpG islands, especially in individuals with Turner syndrome. The X inactivation process appears to be less effective in Klinefelter syndrome as methylation on the X was decreased compared to normal female samples. In a large number of individuals, we verified several loci by pyrosequencing and observed only weak inter-loci correlations between the verified regions. This suggests a certain stochastic/random contribution to the methylation changes at each locus. Interestingly, methylation patterns on some PAR2 loci differ between male and Turner syndrome individuals and between female and Klinefelter syndrome individuals, which possibly contributed to this distinguished and unique autosomal methylation patterns in Turner and Klinefelter syndrome individuals.

CONCLUSIONS: The presented data clearly show that gain or loss of an X chromosome results in different epigenetic effects, which are not necessary opposite.

Keywords: DNA methylation; Epigenetics; Klinefelter; PAR region; Turner; X chromosome inactivation

References

  1. PLoS Genet. 2012;8(4):e1002629 - PubMed
  2. Hum Genet. 2014 Sep;133(9):1075-82 - PubMed
  3. J Clin Endocrinol Metab. 2013 Jan;98(1):20-30 - PubMed
  4. Mol Hum Reprod. 2015 Jan;21(1):58-65 - PubMed
  5. Pediatr Nephrol. 2000 Oct;14 (12 ):1111-4 - PubMed
  6. Nature. 2005 Mar 17;434(7031):400-4 - PubMed
  7. Autoimmun Rev. 2012 May;11(6-7):A538-43 - PubMed
  8. BMC Bioinformatics. 2009 Feb 03;10:48 - PubMed
  9. Hum Mol Genet. 2006 Apr 1;15(7):1123-32 - PubMed
  10. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11847-52 - PubMed
  11. Genomics. 2011 Apr;97(4):214-22 - PubMed
  12. Mol Reprod Dev. 2015 Jan;82(1):17-25 - PubMed
  13. Orphanet J Rare Dis. 2006 Oct 24;1:42 - PubMed
  14. Ann N Y Acad Sci. 2012 May;1256:E1-22 - PubMed
  15. Prenat Diagn. 2003 Sep;23(9):769-70 - PubMed
  16. Clin Endocrinol (Oxf). 2013 Nov;79(5):606-14 - PubMed
  17. J Formos Med Assoc. 2000 Oct;99(10 ):796-8 - PubMed
  18. Development. 2012 Oct;139(19):3583-9 - PubMed
  19. J Virol. 2014 Oct;88(19):11442-58 - PubMed
  20. Genomics. 2007 Feb;89(2):215-23 - PubMed
  21. BMC Bioinformatics. 2010 Nov 30;11:587 - PubMed
  22. Hum Mol Genet. 2012 Jan 1;21(1):219-35 - PubMed
  23. Clin Endocrinol (Oxf). 2001 Aug;55(2):223-6 - PubMed
  24. Front Genet. 2015 Feb 16;6:22 - PubMed
  25. J Pediatr. 2006 Nov;149(5):697-701 - PubMed
  26. Lancet Neurol. 2014 Mar;13(3):306-18 - PubMed
  27. Genome Res. 2010 Apr;20(4):434-9 - PubMed
  28. Am J Obstet Gynecol. 2013 Jun;208(6):484.e1-6 - PubMed
  29. PLoS Genet. 2007 Aug;3(8):e130 - PubMed
  30. Pediatrics. 1988 Dec;82(6):852-6 - PubMed
  31. Bioinformatics. 2008 Jul 1;24(13):1547-8 - PubMed
  32. J Clin Endocrinol Metab. 2015 Mar;100(3):E518-23 - PubMed
  33. Curr Genomics. 2007 Apr;8(2):129-36 - PubMed
  34. Eur J Endocrinol. 2010 Jan;162(1):169-75 - PubMed
  35. Hum Mol Genet. 2002 Dec 1;11(25):3191-8 - PubMed
  36. Nat Genet. 1996 Jun;13(2):227-9 - PubMed
  37. J Neurosci. 2014 Mar 5;34(10):3509-16 - PubMed
  38. Cancer Res. 2002 Apr 15;62(8):2370-7 - PubMed
  39. Nat Genet. 2007 Apr;39(4):457-66 - PubMed
  40. Cell Rep. 2015 May 19;11(7):1102-9 - PubMed
  41. PLoS One. 2014 Jun 16;9(6):e100076 - PubMed
  42. Asian J Androl. 2014 Sep-Oct;16(5):684-8 - PubMed
  43. Nature. 2010 Sep 16;467(7313):285-90 - PubMed
  44. Hear Res. 2000 Jun;144(1-2):21-8 - PubMed
  45. Genes Dev. 2005 Jun 1;19(11):1376-89 - PubMed
  46. Fertil Steril. 2014 Apr;101(4):1097-1103.e1 - PubMed
  47. J Assist Reprod Genet. 2014 Jul;31(7):865-71 - PubMed
  48. Epigenetics. 2014 Apr;9(4):587-99 - PubMed
  49. Nat Biotechnol. 2010 Aug;28(8):848-55 - PubMed
  50. Genome Biol. 2014 Feb 03;15(2):R24 - PubMed
  51. BMC Genomics. 2015 Mar 07;16:156 - PubMed
  52. PLoS One. 2011;6(7):e21800 - PubMed
  53. Asian J Androl. 2014 Mar-Apr;16(2):185-91 - PubMed
  54. Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16501-6 - PubMed

Publication Types