Display options
Share it on

Nat Commun. 2015 Sep 03;6:8150. doi: 10.1038/ncomms9150.

Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits.

Nature communications

Cheng Yang, Xiaoya Cui, Zhexu Zhang, Sum Wai Chiang, Wei Lin, Huan Duan, Jia Li, Feiyu Kang, Ching-Ping Wong

Affiliations

  1. Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
  2. School of Materials Science and Engineering, Georgia Institute of Technology, 771, Ferst Dr, Atlanta, Georgia 30332, USA.
  3. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
  4. Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

PMID: 26333352 PMCID: PMC4569727 DOI: 10.1038/ncomms9150

Abstract

Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics.

References

  1. J Phys Chem B. 2005 Jan 20;109(2):794-8 - PubMed
  2. ACS Appl Mater Interfaces. 2010 Sep;2(9):2637-45 - PubMed
  3. Nat Commun. 2014;5:2994 - PubMed
  4. J Am Chem Soc. 2010 Feb 10;132(5):1476-7 - PubMed
  5. J Am Chem Soc. 2012 Jan 25;134(3):1793-801 - PubMed
  6. ACS Nano. 2013 Jan 22;7(1):851-6 - PubMed
  7. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Oct 5;149:396-401 - PubMed
  8. J Am Chem Soc. 2009 Aug 12;131(31):11027-32 - PubMed
  9. Chemistry. 2008;14(15):4696-703 - PubMed
  10. Nat Mater. 2004 Nov;3(11):783-6 - PubMed
  11. Nature. 2003 Oct 2;425(6957):487-90 - PubMed
  12. Nanoscale. 2014 Jan 21;6(2):833-41 - PubMed
  13. Adv Healthc Mater. 2014 Mar;3(3):332-7 - PubMed
  14. J Am Chem Soc. 2010 Jan 20;132(2):857-62 - PubMed
  15. Nat Nanotechnol. 2010 Dec;5(12):853-7 - PubMed
  16. Nat Mater. 2006 Aug;5(8):660-4 - PubMed
  17. J Am Chem Soc. 2004 Mar 17;126(10):3064-5 - PubMed
  18. Adv Mater. 2013 Jul 12;25(26):3566-70 - PubMed
  19. Nat Nanotechnol. 2010 Mar;5(3):218-24 - PubMed
  20. Chem Commun (Camb). 2010 Oct 14;46(38):7112-4 - PubMed
  21. Nat Mater. 2012 Mar;11(3):241-9 - PubMed
  22. Science. 2005 Jun 3;308(5727):1419-20 - PubMed
  23. Nat Mater. 2009 Jun;8(6):494-9 - PubMed
  24. Langmuir. 2011 May 17;27(10):6211-7 - PubMed
  25. ACS Nano. 2009 Aug 25;3(8):2358-66 - PubMed

Publication Types