Display options
Share it on

Sci Rep. 2015 Sep 03;5:13733. doi: 10.1038/srep13733.

The Hardest Superconducting Metal Nitride.

Scientific reports

Shanmin Wang, Daniel Antonio, Xiaohui Yu, Jianzhong Zhang, Andrew L Cornelius, Duanwei He, Yusheng Zhao

Affiliations

  1. HiPSEC &Physics Department, University of Nevada, Las Vegas, Nevada 89154, USA.
  2. Institute of Atomic &Molecular Physics, Sichuan University, Chengdu 610065, China.
  3. Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

PMID: 26333418 PMCID: PMC4558542 DOI: 10.1038/srep13733

Abstract

Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

References

  1. Nat Mater. 2009 May;8(5):375-82 - PubMed
  2. Science. 2006 Mar 3;311(5765):1275-8 - PubMed
  3. Phys Rev B Condens Matter. 1985 Jan 15;31(2):752-761 - PubMed
  4. J Am Chem Soc. 2015 Apr 15;137(14):4815-22 - PubMed
  5. Inorg Chem. 2013 Dec 2;52(23):13356-62 - PubMed
  6. Phys Rev Lett. 2006 Apr 21;96(15):155501 - PubMed
  7. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10958-62 - PubMed
  8. Phys Rev Lett. 2001 Apr 9;86(15):3348-51 - PubMed
  9. Chem Commun (Camb). 2014 Sep 11;50(70):10041-4 - PubMed
  10. Inorg Chem. 2013 Aug 5;52(15):8638-43 - PubMed
  11. J Am Chem Soc. 2011 Dec 28;133(51):20735-7 - PubMed
  12. Phys Rev Lett. 2010 Aug 20;105(8):085504 - PubMed
  13. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3198-201 - PubMed
  14. J Am Chem Soc. 2013 Jun 26;135(25):9503-11 - PubMed
  15. Nat Mater. 2004 May;3(5):294-7 - PubMed
  16. Chemistry. 2012 Nov 26;18(48):15459-63 - PubMed
  17. Science. 2005 May 27;308(5726):1268-9 - PubMed
  18. Nat Mater. 2003 Mar;2(3):185-9 - PubMed
  19. Inorg Chem. 2015 May 18;54(10):4981-9 - PubMed
  20. Phys Rev B Condens Matter. 1985 Feb 15;31(4):2316-2325 - PubMed

Publication Types