Display options
Share it on

Biomicrofluidics. 2015 Aug 20;9(5):052609. doi: 10.1063/1.4928947. eCollection 2015 Sep.

The role of acoustofluidics in targeted drug delivery.

Biomicrofluidics

Nilanjana Bose, Xunli Zhang, Tapas K Maiti, Suman Chakraborty

Affiliations

  1. Department of Biotechnology, Indian Institute of Technology Kharagpur , Kharagpur 721302, India.
  2. Bioengineering Group, Engineering Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom.
  3. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur , Kharagpur 721302, India.

PMID: 26339329 PMCID: PMC4545083 DOI: 10.1063/1.4928947

Abstract

With the fast development of acoustic systems in clinical and therapeutic applications, acoustically driven microbubbles have gained a prominent role as powerful tools to carry, transfer, direct, and target drug molecules in cells, tissues, and tumors in the expanding fields of targeted drug delivery and gene therapy. The aim of the present study is to establish a biocompatible acoustic microfluidic system and to demonstrate the generation of an acoustic field and its effects on microbubbles and biological cells in the microfluidic system. The acoustic field creates non-linear oscillations of the microbubble-clusters, which results in generation of shear stress on cells in such microsystems. This effectively helps in delivering extracellular probes in living cells by sonoporation. The sonoporation is investigated under the combined effects of acoustic stress and hydrodynamic stress during targeted drug and gene delivery.

References

  1. Expert Opin Drug Deliv. 2004 Nov;1(1):37-56 - PubMed
  2. Expert Opin Drug Deliv. 2007 Sep;4(5):475-93 - PubMed
  3. Ultrasound Med Biol. 2002 Jun;28(6):817-22 - PubMed
  4. Biomaterials. 1990 Nov;11(9):713-7 - PubMed
  5. Eur J Radiol. 1998 May;27 Suppl 2:S157-60 - PubMed
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):021910 - PubMed
  7. Lab Chip. 2012 Mar 21;12(6):1014-21 - PubMed
  8. Circulation. 1998 Jul 28;98(4):290-3 - PubMed
  9. Cancer Metastasis Rev. 2000;19(1-2):131-8 - PubMed
  10. BMJ. 2001 May 19;322(7296):1222-5 - PubMed
  11. Theranostics. 2012;2(12):1208-22 - PubMed
  12. Eur J Radiol. 2002 May;42(2):160-8 - PubMed
  13. Lab Chip. 2012 Nov 7;12(21):4216-27 - PubMed
  14. J Acoust Soc Am. 1999 May;105(5):2951-7 - PubMed
  15. Biomicrofluidics. 2011 Dec;5(4):44108-4410815 - PubMed
  16. Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3258-63 - PubMed
  17. Lab Chip. 2012 Jan 7;12(1):69-73 - PubMed
  18. Invest Radiol. 1968 Sep-Oct;3(5):356-66 - PubMed
  19. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):43-8 - PubMed
  20. J Am Soc Echocardiogr. 2000 Oct;13(10):959-67 - PubMed
  21. Ultrasound Med Biol. 2005 Sep;31(9):1279-83 - PubMed
  22. Lab Chip. 2014 Jan 21;14(2):384-91 - PubMed
  23. Drug Discov Today. 2010 Nov;15(21-22):892-906 - PubMed
  24. Nat Rev Drug Discov. 2005 Mar;4(3):255-60 - PubMed
  25. Int J Pharm. 2011 Jul 29;414(1-2):161-70 - PubMed
  26. Ultrasound Med Biol. 2000 May;26(4):661-7 - PubMed
  27. Circulation. 1998 Sep 29;98(13):1264-7 - PubMed
  28. Eur J Radiol. 2006 Dec;60(3):324-30 - PubMed
  29. Adv Drug Deliv Rev. 2005 Apr 5;57(5):733-53 - PubMed
  30. J Control Release. 2011 Jan 5;149(1):36-41 - PubMed
  31. Ultrasound Med Biol. 2002 Jan;28(1):125-9 - PubMed
  32. Annu Rev Biomed Eng. 2007;9:415-47 - PubMed
  33. Ultrasound Med Biol. 2000 Sep;26(7):1169-75 - PubMed
  34. J Control Release. 2006 May 15;112(2):149-55 - PubMed
  35. Lab Chip. 2012 Jan 7;12(1):20-8 - PubMed
  36. J Am Coll Cardiol. 1990 Aug;16(2):316-24 - PubMed
  37. Lab Chip. 2011 Nov 7;11(21):3579-80 - PubMed
  38. IEEE Trans Ultrason Ferroelectr Freq Control. 1986;33(2):165-70 - PubMed
  39. Lab Chip. 2012 Nov 7;12(21):4228-31 - PubMed
  40. Chest. 2005 Oct;128(4):2918-32 - PubMed
  41. Phys Med Biol. 2009 Mar 21;54(6):R27-57 - PubMed
  42. Drug Des Devel Ther. 2013 May 03;7:375-88 - PubMed
  43. Nature. 2003 May 8;423(6936):153-6 - PubMed

Publication Types