Display options
Share it on

Front Microbiol. 2015 Sep 14;6:908. doi: 10.3389/fmicb.2015.00908. eCollection 2015.

Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis.

Frontiers in microbiology

Cao Zheng, Yang Ma, Xun Wang, Yuqun Xie, Maria K Ali, Jin He

Affiliations

  1. State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China.
  2. Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology Wuhan, China.

PMID: 26441857 PMCID: PMC4568413 DOI: 10.3389/fmicb.2015.00908

Abstract

Cyclic di-AMP (c-di-AMP) is a recently discovered bacterial secondary messenger molecule, which is associated with various physiological functions. In the genus Bacillus, the intracellular level and turnover of c-di-AMP are mainly regulated by three diadenylate cyclases (DACs), including DisA, CdaA and CdaS, and two c-di-AMP-specific phosphodiesterases (GdpP and PgpH). In this study, we demonstrated that CdaS protein from B. thuringiensis is a hexameric DAC protein that can convert ATP or ADP to c-di-AMP in vitro and the N-terminal YojJ domain is essential for the DAC activity. Based on the markerless gene knock-out method, we demonstrated that the transcription of cdaS was initiated by the sporulation-specific sigma factor σ(H) and the deletion of cdaS significantly delayed sporulation and parasporal crystal formation. These findings contrast with similar experiments conducted using B. subtilis, wherein transcription of its cdaS was initiated by the sigma factor σ(G). Deletion of all the three DAC genes from a single strain was unsuccessful, suggesting that c-di-AMP is an indispensable molecule in B. thuringiensis. Phylogenetic analysis indicated increased diversity of CdaS in the B. cereus and B. subtilis Bacillus subgroups. In summary, this study identifies important aspects in the regulation of c-di-AMP in the genus Bacillus.

Keywords: Bacillus thuringiensis; CdaS; cyclic di-AMP; parasporal crystal; sporulation

References

  1. J Bacteriol. 2013 Dec;195(23):5250-61 - PubMed
  2. Infect Immun. 2014 May;82(5):1840-9 - PubMed
  3. Nat Immunol. 2012 Dec;13(12):1155-61 - PubMed
  4. Microbiol Mol Biol Rev. 2013 Mar;77(1):1-52 - PubMed
  5. Nat Rev Microbiol. 2013 Aug;11(8):513-24 - PubMed
  6. J Biol Chem. 2013 Jan 18;288(3):2004-17 - PubMed
  7. Science. 2006 Feb 24;311(5764):1113-6 - PubMed
  8. Mol Microbiol. 1995 Oct;18(1):1-12 - PubMed
  9. Chem Soc Rev. 2013 Jan 7;42(1):305-41 - PubMed
  10. Science. 2012 Mar 2;335(6072):1103-6 - PubMed
  11. MBio. 2013 Apr 30;4(3):e00018-13 - PubMed
  12. Microbiol Mol Biol Rev. 1998 Sep;62(3):775-806 - PubMed
  13. Mol Cell. 2008 Apr 25;30(2):167-78 - PubMed
  14. Cell. 2014 Sep 11;158(6):1389-401 - PubMed
  15. DNA Repair (Amst). 2015 Mar;27:1-8 - PubMed
  16. Microbiol Res. 2014 Sep-Oct;169(9-10):749-58 - PubMed
  17. J Biol Chem. 2013 Aug 2;288(31):22426-36 - PubMed
  18. J Bacteriol. 2010 Aug;192(15):4074-5 - PubMed
  19. J Biol Chem. 2015 Jan 30;290(5):2888-901 - PubMed
  20. Nat Chem Biol. 2014 Sep;10(9):787-92 - PubMed
  21. MBio. 2013 May 28;4(3):e00282-13 - PubMed
  22. Appl Environ Microbiol. 2012 Sep;78(18):6466-74 - PubMed
  23. Mol Cell Proteomics. 2013 May;12(5):1363-76 - PubMed
  24. Enzyme Microb Technol. 2013 May 10;52(6-7):319-24 - PubMed
  25. J Microbiol Biotechnol. 2015 Feb;25(2):152-61 - PubMed
  26. Science. 2010 Jun 25;328(5986):1703-5 - PubMed
  27. J Proteomics. 2012 Feb 2;75(4):1235-46 - PubMed
  28. Mol Microbiol. 2012 Feb;83(3):623-39 - PubMed
  29. Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E747-56 - PubMed
  30. PLoS Pathog. 2011 Sep;7(9):e1002217 - PubMed
  31. Methods Mol Biol. 2013;1016:27-37 - PubMed
  32. PLoS One. 2013 Jul 15;8(7):e69425 - PubMed
  33. PLoS One. 2014 Jan 23;9(1):e86096 - PubMed
  34. Infect Immun. 2006 Mar;74(3):1949-53 - PubMed
  35. Mol Microbiol. 2011 Feb;79(3):600-15 - PubMed
  36. Nucleic Acids Res. 2012 May;40(9):4193-202 - PubMed
  37. FEMS Microbiol Lett. 2005 Sep 15;250(2):175-84 - PubMed
  38. FEBS Lett. 2015 Jan 2;589(1):45-51 - PubMed
  39. Int J Biol Sci. 2015 May 30;11(7):813-24 - PubMed
  40. J Biol Chem. 2013 Feb 1;288(5):3085-96 - PubMed
  41. J Bacteriol. 2011 Apr;193(7):1543-51 - PubMed
  42. Sci Signal. 2008 Aug 19;1(33):pe39 - PubMed
  43. J Bacteriol. 2014 Feb;196(3):614-23 - PubMed
  44. Wei Sheng Wu Xue Bao. 2000 Feb;40(1):85-90 - PubMed
  45. Curr Biol. 2010 Sep 14;20(17):R735-45 - PubMed
  46. J Biol Chem. 2014 Jul 25;289(30):21098-107 - PubMed
  47. J Bacteriol. 2013 Nov;195(22):5123-32 - PubMed
  48. EMBO J. 2013 Sep 11;32(18):2430-8 - PubMed
  49. Nat Chem Biol. 2013 Dec;9(12):834-9 - PubMed
  50. J Proteome Res. 2013 Dec 6;12(12):5487-501 - PubMed
  51. J Bacteriol. 2015 Oct;197(20):3265-74 - PubMed
  52. Mol Microbiol. 2011 Feb;79(3):562-5 - PubMed
  53. Appl Environ Microbiol. 2001 Nov;67(11):5032-6 - PubMed
  54. EMBO Rep. 2011 Jun;12(6):594-601 - PubMed
  55. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9084-9 - PubMed
  56. J Biol Chem. 2015 Mar 6;290(10):6596-606 - PubMed
  57. EMBO J. 2014 Nov 18;33(22):2692-703 - PubMed
  58. PLoS One. 2012;7(4):e35206 - PubMed
  59. J Biol Chem. 2013 Apr 26;288(17):11949-59 - PubMed
  60. J Biol Chem. 2015 Jan 30;290(5):3069-80 - PubMed
  61. J Biol Chem. 2010 Jan 1;285(1):473-82 - PubMed
  62. Microbiology. 2012 Nov;158(Pt 11):2732-41 - PubMed
  63. Cell. 2012 Apr 13;149(2):358-70 - PubMed
  64. PLoS One. 2013 May 10;8(5):e62960 - PubMed
  65. Nat Chem Biol. 2014 Sep;10(9):780-6 - PubMed

Publication Types