Display options
Share it on

Ecol Evol. 2015 Aug 25;5(18):3939-53. doi: 10.1002/ece3.1675. eCollection 2015 Sep.

Effects of landscape matrix on population connectivity of an arboreal mammal, Petaurus breviceps.

Ecology and evolution

Mansoureh Malekian, Steven J B Cooper, Kathleen M Saint, Melanie L Lancaster, Andrea C Taylor, Susan M Carthew

Affiliations

  1. Department of Natural Resources Isfahan University of Technology Isfahan 84156-83111 Iran ; School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia ; Australian Centre for Evolutionary Biology and Biodiversity The University of Adelaide Adelaide SA 5005 Australia.
  2. School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia ; Australian Centre for Evolutionary Biology and Biodiversity The University of Adelaide Adelaide SA 5005 Australia ; Evolutionary Biology Unit South Australian Museum Adelaide SA 5000 Australia.
  3. Evolutionary Biology Unit South Australian Museum Adelaide SA 5000 Australia.
  4. Healesville Sanctuary Badger Creek Road Healesville Vic. 3777 Australia.
  5. School of Biological Sciences Monash University Clayton Victoria 3800 Australia.
  6. School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia ; Research Institute for Environment and Livelihoods Charles Darwin University Darwin NT 0909 Australia.

PMID: 26442617 PMCID: PMC4588655 DOI: 10.1002/ece3.1675

Abstract

Ongoing habitat loss and fragmentation is considered a threat to biodiversity as it can create small, isolated populations that are at increased risk of extinction. Tree-dependent species are predicted to be highly sensitive to forest and woodland loss and fragmentation, but few studies have tested the influence of different types of landscape matrix on gene flow and population structure of arboreal species. Here, we examine the effects of landscape matrix on population structure of the sugar glider (Petaurus breviceps) in a fragmented landscape in southeastern South Australia. We collected 250 individuals across 12 native Eucalyptus forest remnants surrounded by cleared agricultural land or exotic Pinus radiata plantations and a large continuous eucalypt forest. Fifteen microsatellite loci were genotyped and analyzed to infer levels of population differentiation and dispersal. Genetic differentiation among most forest patches was evident. We found evidence for female philopatry and restricted dispersal distances for females relative to males, suggesting there is male-biased dispersal. Among the environmental variables, spatial variables including geographic location, minimum distance to neighboring patch, and degree of isolation were the most important in explaining genetic variation. The permeability of a cleared agricultural matrix to dispersing gliders was significantly higher than that of a pine matrix, with the gliders dispersing shorter distances across the latter. Our results added to previous findings for other species of restricted dispersal and connectivity due to habitat fragmentation in the same region, providing valuable information for the development of strategies to improve the connectivity of populations in the future.

Keywords: Connectivity; Petaurus breviceps; fragmentation; gene flow; glider; population genetics; sex dispersal

References

  1. PLoS One. 2011;6(10):e26651 - PubMed
  2. Mol Ecol. 2000 Oct;9(10):1681-3 - PubMed
  3. Mol Ecol. 2005 Jul;14(8):2611-20 - PubMed
  4. Mol Ecol. 2007 Feb;16(3):501-16 - PubMed
  5. Anim Behav. 2000 Apr;59(4):677-688 - PubMed
  6. Ecology. 2014 Jun;95(6):1556-68 - PubMed
  7. Mol Ecol. 2008 Sep;17(18):4015-26 - PubMed
  8. Evol Bioinform Online. 2007 Feb 23;1:47-50 - PubMed
  9. PLoS One. 2013 Dec 26;8(12):e80383 - PubMed
  10. Mol Ecol Resour. 2010 May;10(3):564-7 - PubMed
  11. Mol Ecol. 2004 Sep;13(9):2841-50 - PubMed
  12. Bioinformatics. 2012 Oct 1;28(19):2537-9 - PubMed
  13. Mol Ecol. 2011 May;20(9):1829-44 - PubMed
  14. Mol Ecol. 2011 Jun;20(11):2258-71 - PubMed
  15. Evolution. 1989 Mar;43(2):258-275 - PubMed
  16. Proc Biol Sci. 2003 Feb 22;270(1513):417-23 - PubMed
  17. Genetics. 1978 Jul;89(3):583-90 - PubMed
  18. Mol Ecol. 2007 Jul;16(13):2655-66 - PubMed
  19. Mol Ecol Resour. 2010 Sep;10(5):773-84 - PubMed
  20. Science. 2005 Jul 22;309(5734):570-4 - PubMed
  21. Genetics. 2003 Jan;163(1):367-74 - PubMed
  22. Evolution. 1989 Jan;43(1):223-225 - PubMed
  23. Mol Ecol Resour. 2010 May;10(3):556-7 - PubMed
  24. Physiol Behav. 1994 Jun;55(6):1131-4 - PubMed
  25. Mol Ecol. 2005 May;14(6):1667-80 - PubMed
  26. Mol Ecol. 2004 Jan;13(1):55-65 - PubMed
  27. Mol Ecol. 2005 Feb;14(2):441-56 - PubMed
  28. Mol Ecol. 2006 Sep;15(10):2833-43 - PubMed
  29. Genetics. 1992 Jun;131(2):479-91 - PubMed
  30. Ecol Evol. 2015 Aug 25;5(18):3939-53 - PubMed
  31. Biometrics. 1992 Jun;48(2):361-72 - PubMed
  32. Genetics. 2000 Jun;155(2):945-59 - PubMed
  33. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9197-201 - PubMed
  34. PLoS One. 2010 Sep 16;5(9): - PubMed
  35. Mol Ecol Resour. 2010 Sep;10(5):831-44 - PubMed
  36. J Hered. 2004 Nov-Dec;95(6):536-9 - PubMed
  37. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4531-40 - PubMed
  38. Mol Ecol. 2009 Dec;18(23):4734-56 - PubMed
  39. Bioinformatics. 2007 Jul 15;23(14):1801-6 - PubMed

Publication Types