Display options
Share it on

Appl Geochem. 2015 Nov 01;62:131-149. doi: 10.1016/j.apgeochem.2015.01.005. Epub 2015 Feb 07.

Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate.

Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry

Robert A Root, Sarah M Hayes, Corin M Hammond, Raina M Maier, Jon Chorover

Affiliations

  1. Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721.

PMID: 26549929 PMCID: PMC4632981 DOI: 10.1016/j.apgeochem.2015.01.005

Abstract

Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg

Keywords: XAS; arsenic; lead; mine tailing; semi-arid; zinc

References

  1. Environ Sci Technol. 2008 Apr 1;42(7):2361-6 - PubMed
  2. Environ Health Perspect. 2006 Aug;114(8):1162-71 - PubMed
  3. Environ Sci Technol. 2012 Jan 17;46(2):1019-27 - PubMed
  4. Chemosphere. 2009 Sep;77(1):140-7 - PubMed
  5. Fundam Appl Toxicol. 1992 Oct;19(3):388-98 - PubMed
  6. Phys Rev B Condens Matter. 1993 Jun 1;47(21):14126-14131 - PubMed
  7. Environ Sci Technol. 2005 Dec 1;39(23 ):9147-55 - PubMed
  8. Environ Sci Technol. 2013 Aug 6;47(15):8164-71 - PubMed
  9. Appl Geochem. 2009 Dec 1;42(12):2234-2245 - PubMed
  10. Environ Sci Technol. 2001 Jul 1;35(13):2778-84 - PubMed
  11. Sci Total Environ. 2012 Sep 1;433:58-73 - PubMed
  12. Analyst. 2008 Jan;133(1):25-46 - PubMed
  13. Environ Sci Technol. 2002 Apr 15;36(8):1757-62 - PubMed
  14. Environ Sci Technol. 2012 Jun 5;46(11):5834-41 - PubMed
  15. Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13703-8 - PubMed
  16. Environ Sci Technol. 2013 Nov 19;47(22):12992-3000 - PubMed
  17. Chemosphere. 2002 Jun;47(10):1103-11 - PubMed
  18. Environ Sci Technol. 2011 May 15;45(10):4468-74 - PubMed
  19. Environ Health Perspect. 2008 Mar;116(3):278-83 - PubMed
  20. J Environ Qual. 2007 Jan 09;36(1):61-9 - PubMed
  21. Environ Health Perspect. 1999 Apr;107(4):279-84 - PubMed
  22. N Engl J Med. 2003 Apr 17;348(16):1517-26 - PubMed
  23. J Exp Bot. 2010 Feb;61(4):945-54 - PubMed
  24. J Environ Monit. 2012 Mar;14(3):839-44 - PubMed
  25. J Synchrotron Radiat. 1997 Jul 1;4(Pt 4):243-55 - PubMed
  26. Environ Sci Technol. 2003 Sep 15;37(18):4182-9 - PubMed
  27. Geochim Cosmochim Acta. 2014 Sep 15;141:240-257 - PubMed
  28. Geochem Trans. 2011 Jan 24;12(1):1 - PubMed
  29. Environ Sci Technol. 2005 May 15;39(10):3571-9 - PubMed
  30. Appl Geochem. 2013 Nov;38:110-120 - PubMed

Publication Types

Grant support