Display options
Share it on

eNeuro. 2015 Aug 21;2(4). doi: 10.1523/ENEURO.0071-15.2015. eCollection 2015.

Sleep in Populations of Drosophila Melanogaster.

eNeuro

Chang Liu, Paula R Haynes, Nathan C Donelson, Shani Aharon, Leslie C Griffith

Affiliations

  1. Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts 02454-9110.

PMID: 26465005 PMCID: PMC4596024 DOI: 10.1523/ENEURO.0071-15.2015

Abstract

The fruit fly Drosophila melanogaster is a diurnal insect active during the day with consolidated sleep at night. Social interactions between pairs of flies have been shown to affect locomotor activity patterns, but effects on locomotion and sleep patterns have not been assessed for larger populations. Here, we use a commercially available locomotor activity monitor (LAM25H) system to record and analyze sleep behavior. Surprisingly, we find that same-sex populations of flies synchronize their sleep/wake activity, resulting in a population sleep pattern, which is similar but not identical to that of isolated individuals. Like individual flies, groups of flies show circadian and homeostatic regulation of sleep, as well as sexual dimorphism in sleep pattern and sensitivity to starvation and a known sleep-disrupting mutation (amnesiac). Populations of flies, however, exhibit distinct sleep characteristics from individuals. Differences in sleep appear to be due to olfaction-dependent social interactions and change with population size and sex ratio. These data support the idea that it is possible to investigate neural mechanisms underlying the effects of population behaviors on sleep by directly looking at a large number of animals in laboratory conditions.

Keywords: Drosophila; population; sleep

References

  1. Nat Methods. 2009 Jun;6(6):451-7 - PubMed
  2. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9221-5 - PubMed
  3. Science. 2000 Mar 10;287(5459):1834-7 - PubMed
  4. Neuron. 2000 Jan;25(1):129-38 - PubMed
  5. Curr Biol. 2007 Feb 6;17(3):244-51 - PubMed
  6. Nat Neurosci. 2011 Jun 19;14 (7):896-902 - PubMed
  7. Ann N Y Acad Sci. 2008;1129:323-9 - PubMed
  8. Biochem Biophys Res Commun. 2008 Aug 8;372(4):798-803 - PubMed
  9. PLoS One. 2013 Dec 18;8(12):e84495 - PubMed
  10. Neuron. 2004 Jan 8;41(1):35-43 - PubMed
  11. Curr Biol. 2003 Jan 21;13(2):140-5 - PubMed
  12. Curr Biol. 2010 Jul 13;20(13):1209-15 - PubMed
  13. PLoS One. 2012;7(5):e37250 - PubMed
  14. Science. 2002 Dec 6;298(5600):2010-2 - PubMed
  15. Sleep. 2012 Apr 01;35(4):545-57 - PubMed
  16. Nat Methods. 2011 Jun 05;8(7):592-8 - PubMed
  17. Neuron. 2004 Sep 2;43(5):703-14 - PubMed
  18. J Comp Physiol A. 1988 Jan;162(1):35-46 - PubMed
  19. PLoS Genet. 2012;8(5):e1002668 - PubMed
  20. Nature. 2010 Jan 14;463(7278):227-31 - PubMed
  21. Biol Cybern. 2000 Jan;82(1):61-8 - PubMed
  22. Proc Biol Sci. 2010 Jan 7;277(1678):65-70 - PubMed
  23. Behav Genet. 1973 Jun;3(2):107-19 - PubMed
  24. Methods Enzymol. 2005;393:759-72 - PubMed
  25. Proc Natl Acad Sci U S A. 2015 May 26;112(21):E2829-35 - PubMed
  26. Brain Sci. 2014 Aug 11;4(3):453-70 - PubMed
  27. PLoS One. 2012;7(7):e40506 - PubMed
  28. PLoS Biol. 2010 Aug 31;8(8):null - PubMed
  29. Nature. 1998 Mar 12;392(6672):177-9 - PubMed
  30. Proc Natl Acad Sci U S A. 2012 Oct 16;109 Suppl 2:17174-9 - PubMed
  31. J Exp Biol. 2011 Nov 15;214(Pt 22):3742-50 - PubMed
  32. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6914-9 - PubMed
  33. J Biol Rhythms. 2012 Apr;27(2):107-16 - PubMed
  34. Sleep. 2008 Apr;31(4):465-72 - PubMed
  35. Curr Biol. 2008 Sep 23;18(18):1373-83 - PubMed
  36. Sleep. 2004 Jun 15;27(4):628-39 - PubMed
  37. J Neurosci. 2002 Dec 15;22(24):11035-44 - PubMed

Publication Types

Grant support