Display options
Share it on

Sci Rep. 2015 Nov 20;5:17045. doi: 10.1038/srep17045.

High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films.

Scientific reports

Yuqing Liu, Bo Weng, Joselito M Razal, Qun Xu, Chen Zhao, Yuyang Hou, Shayan Seyedin, Rouhollah Jalili, Gordon G Wallace, Jun Chen

Affiliations

  1. ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
  2. Chongqing Key Lab for Advanced Materials &Clean Energies of Technologies, Institute for Clean Energy and Advanced Materials, Southwest University, Beibei, Chongqing, 400715 China.
  3. Deakin University, Institute for Frontier Materials, Geelong, VIC 3220, Australia.
  4. College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052 China.

PMID: 26586106 PMCID: PMC4653634 DOI: 10.1038/srep17045

Abstract

Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.

References

  1. Nano Lett. 2010 Feb 10;10(2):708-14 - PubMed
  2. ACS Nano. 2010 Apr 27;4(4):1963-70 - PubMed
  3. Adv Mater. 2015 Jun 24;27(24):3669-75 - PubMed
  4. Angew Chem Int Ed Engl. 2012 May 14;51(20):4934-8 - PubMed
  5. ACS Nano. 2012 Jul 24;6(7):6400-6 - PubMed
  6. ACS Nano. 2009 Jul 28;3(7):1745-52 - PubMed
  7. Langmuir. 2011 Mar 1;27(5):2014-8 - PubMed
  8. Science. 2008 Aug 1;321(5889):651-2 - PubMed
  9. Science. 2012 Mar 16;335(6074):1326-30 - PubMed
  10. ACS Nano. 2010 Aug 24;4(8):4806-14 - PubMed
  11. ACS Appl Mater Interfaces. 2013 Aug 28;5(16):7676-81 - PubMed
  12. Nat Nanotechnol. 2010 Sep;5(9):651-4 - PubMed
  13. ACS Nano. 2013 May 28;7(5):4042-9 - PubMed
  14. ACS Nano. 2011 Sep 27;5(9):7205-13 - PubMed
  15. Nano Lett. 2009 May;9(5):1872-6 - PubMed
  16. Nat Commun. 2010;1:73 - PubMed
  17. Langmuir. 2010 Aug 3;26(15):12902-8 - PubMed
  18. Sci Rep. 2013 Dec 16;3:3438 - PubMed
  19. Nanotechnology. 2012 Feb 17;23(6):065401 - PubMed
  20. Chem Rev. 2004 Oct;104(10):4245-69 - PubMed
  21. Nat Nanotechnol. 2011 Apr;6(4):232-6 - PubMed
  22. Nano Lett. 2011 Dec 14;11(12):5165-72 - PubMed
  23. Nanoscale. 2014 Jun 7;6(11):5944-52 - PubMed

Publication Types