Display options
Share it on

Front Mol Biosci. 2015 Nov 16;2:64. doi: 10.3389/fmolb.2015.00064. eCollection 2015.

Surface-water Interface Induces Conformational Changes Critical for Protein Adsorption: Implications for Monolayer Formation of EAS Hydrophobin.

Frontiers in molecular biosciences

Kamron Ley, Andrew Christofferson, Matthew Penna, Dave Winkler, Shane Maclaughlin, Irene Yarovsky

Affiliations

  1. Health Innovations Research Institute and School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University Melbourne, VIC, Australia.
  2. Health Innovations Research Institute and School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University Melbourne, VIC, Australia ; Australian Research Council (ARC) Research Hub for Australian Steel Manufacturing Wollongong, NSW, Australia.
  3. CSIRO, Manufacturing Flagship Clayton, VIC, Australia ; Institute of Pharmaceutical Science, Monash University Parkville, VIC, Australia ; Institute for Molecular Science, Latrobe University Bundoora, VIC, Australia.
  4. Australian Research Council (ARC) Research Hub for Australian Steel Manufacturing Wollongong, NSW, Australia ; BlueScope Steel Research Laboratories Port Kembla, NSW, Australia.

PMID: 26636091 PMCID: PMC4644811 DOI: 10.3389/fmolb.2015.00064

Abstract

The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

Keywords: anti-fouling; biofouling; hydrophobin; molecular dynamics; protein adsorption; silica surface

References

  1. Biochim Biophys Acta. 2000 Sep 18;1469(2):79-86 - PubMed
  2. Structure. 2001 Feb 7;9(2):83-91 - PubMed
  3. Annu Rev Microbiol. 2001;55:625-46 - PubMed
  4. Biochemistry. 2003 May 13;42(18):5253-8 - PubMed
  5. Biofouling. 2003 Apr;19 Suppl:9-15 - PubMed
  6. J Chem Phys. 2004 Nov 22;121(20):10096-103 - PubMed
  7. Biophys J. 2005 Jul;89(1):158-66 - PubMed
  8. FEMS Microbiol Rev. 2005 Nov;29(5):877-96 - PubMed
  9. Biophys J. 2006 Feb 15;90(4):L36-8 - PubMed
  10. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3621-6 - PubMed
  11. Curr Opin Struct Biol. 2006 Apr;16(2):152-9 - PubMed
  12. J Phys Chem B. 2006 Aug 17;110(32):15963-72 - PubMed
  13. J Phys Chem B. 2006 Nov 2;110(43):21497-508 - PubMed
  14. Langmuir. 2007 Oct 23;23(22):11206-10 - PubMed
  15. J Mol Biol. 2008 Oct 10;382(3):708-20 - PubMed
  16. Langmuir. 2009 Feb 3;25(3):1638-44 - PubMed
  17. Langmuir. 2010 Jul 6;26(13):11003-9 - PubMed
  18. Biofouling. 2011 Jan;27(1):87-98 - PubMed
  19. J Am Chem Soc. 2011 Feb 9;133(5):1438-50 - PubMed
  20. ACS Nano. 2011 Mar 22;5(3):2215-23 - PubMed
  21. Anal Chem. 1996 Jun 1;68(11):1974-5 - PubMed
  22. Biotechnol J. 2011 Sep;6(9):1103-14 - PubMed
  23. J Comput Aided Mol Des. 2012 Jan;26(1):93-5 - PubMed
  24. J Phys Chem B. 2012 Mar 1;116(8):2498-503 - PubMed
  25. J Am Chem Soc. 2012 Feb 1;134(4):2407-13 - PubMed
  26. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E804-11 - PubMed
  27. Langmuir. 2012 Apr 3;28(13):5724-8 - PubMed
  28. Langmuir. 2012 May 8;28(18):7212-22 - PubMed
  29. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6951-6 - PubMed
  30. J Am Chem Soc. 2012 Dec 5;134(48):19628-38 - PubMed
  31. Science. 2012 Nov 23;338(6110):1042-6 - PubMed
  32. Langmuir. 2012 Dec 18;28(50):17263-72 - PubMed
  33. J Chem Theory Comput. 2012 Oct 9;8(10):3769-3776 - PubMed
  34. Trends Biotechnol. 2013 May;31(5):295-304 - PubMed
  35. Chemphyschem. 2001 Sep 17;2(8-9):543-6 - PubMed
  36. Biomacromolecules. 2013 Jul 8;14(7):2283-93 - PubMed
  37. Biofouling. 2013;29(6):735-49 - PubMed
  38. Biomaterials. 2013 Nov;34(34):8533-54 - PubMed
  39. J Hosp Infect. 2013 Oct;85(2):87-93 - PubMed
  40. Langmuir. 2013 Nov 26;29(47):14451-9 - PubMed
  41. Langmuir. 2014 Jan 14;30(1):227-33 - PubMed
  42. Trends Biotechnol. 2014 Mar;32(3):140-6 - PubMed
  43. J Am Chem Soc. 2014 Apr 9;136(14):5323-31 - PubMed
  44. J Phys Chem B. 1998 Apr 30;102(18):3586-616 - PubMed
  45. Langmuir. 2014 Sep 9;30(35):10617-25 - PubMed
  46. Nanomaterials (Basel). 2014 Sep 17;4(3):827-843 - PubMed
  47. Biophys Rev. 2012 Jun;4(2):137-147 - PubMed
  48. Comput Appl Biosci. 1993 Dec;9(6):745-56 - PubMed
  49. Microbiology. 1996 May;142 ( Pt 5):1321-9 - PubMed

Publication Types