Display options
Share it on

Sci Adv. 2015 Oct 30;1(9):e1500707. doi: 10.1126/sciadv.1500707. eCollection 2015 Oct.

A surface code quantum computer in silicon.

Science advances

Charles D Hill, Eldad Peretz, Samuel J Hile, Matthew G House, Martin Fuechsle, Sven Rogge, Michelle Y Simmons, Lloyd C L Hollenberg

Affiliations

  1. Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010, Australia.
  2. Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia.

PMID: 26601310 PMCID: PMC4646824 DOI: 10.1126/sciadv.1500707

Abstract

The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

Keywords: Donors in silicon; Silicon quantum computing; Spin qubits

References

  1. Nat Nanotechnol. 2014 Dec;9(12):981-5 - PubMed
  2. Phys Rev Lett. 2007 May 4;98(18):180501 - PubMed
  3. Phys Rev Lett. 2010 Nov 12;105(20):200502 - PubMed
  4. Phys Rev Lett. 2014 Nov 28;113(22):220501 - PubMed
  5. Phys Rev Lett. 2012 May 4;108(18):180501 - PubMed
  6. Nanoscale Res Lett. 2013 Feb 27;8(1):111 - PubMed
  7. Nature. 2013 Apr 18;496(7445):334-8 - PubMed
  8. Nature. 2010 Oct 7;467(7316):687-91 - PubMed
  9. Nat Mater. 2011 Dec 04;11(2):143-7 - PubMed
  10. Nano Lett. 2011 Oct 12;11(10):4376-81 - PubMed
  11. Phys Rev Lett. 2011 Jan 21;106(3):037601 - PubMed
  12. Nat Commun. 2015 Apr 29;6:6979 - PubMed
  13. Phys Rev Lett. 2004 Nov 26;93(22):226102 - PubMed
  14. Phys Rev Lett. 2012 Jan 13;108(2):027602 - PubMed
  15. Nat Nanotechnol. 2012 Feb 19;7(4):242-6 - PubMed
  16. Nanotechnology. 2013 Feb 1;24(4):045303 - PubMed
  17. Nat Mater. 2014 Jun;13(6):605-10 - PubMed
  18. Nature. 2014 Apr 24;508(7497):500-3 - PubMed
  19. Science. 2012 Jan 6;335(6064):64-7 - PubMed
  20. Phys Rev Lett. 2003 Feb 28;90(8):087901 - PubMed
  21. Phys Rev Lett. 2006 Oct 20;97(16):166402 - PubMed
  22. Nat Commun. 2013;4:2017 - PubMed
  23. Phys Rev Lett. 2012 Aug 10;109(6):060501 - PubMed
  24. Science. 2014 Jul 18;345(6194):302-5 - PubMed
  25. Science. 2013 Nov 15;342(6160):830-3 - PubMed
  26. Nature. 2012 Sep 27;489(7417):541-5 - PubMed
  27. Nat Nanotechnol. 2014 Jun;9(6):430-5 - PubMed
  28. Nature. 2015 Mar 5;519(7541):66-9 - PubMed

Publication Types