Display options
Share it on

BBA Clin. 2015 Jul 23;4:59-68. doi: 10.1016/j.bbacli.2015.07.001. eCollection 2015 Dec.

Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients.

BBA clinical

Peter P Ruvolo, YiHua Qiu, Kevin R Coombes, Nianxiang Zhang, E Shannon Neeley, Vivian R Ruvolo, Numsen Hail, Gautam Borthakur, Marina Konopleva, Michael Andreeff, Steven M Kornblau

Affiliations

  1. Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
  2. Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States ; Department of Biomedical Informatics, Ohio State University Medical Center, Columbus, OH 43210, United States.
  3. Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States.
  4. Department of Statistics, Brigham Young University, Provo, UT, United States.

PMID: 26674329 PMCID: PMC4661707 DOI: 10.1016/j.bbacli.2015.07.001

Abstract

BACKGROUND: Acute myeloid leukemia (AML) patients with highly active AKT tend to do poorly. Cell cycle arrest and apoptosis are tightly regulated by AKT via phosphorylation of GSK3α and β isoforms which inactivates these kinases. In the current study we examine the prognostic role of AKT mediated GSK3 phosphorylation in AML.

METHODS: We analyzed GSK3α/β phosphorylation by reverse phase protein analysis (RPPA) in a cohort of 511 acute myeloid leukemia (AML) patients. Levels of phosphorylated GSK3 were correlated with patient characteristics including survival and with expression of other proteins important in AML cell survival.

RESULTS: High levels of p-GSK3α/β correlated with adverse overall survival and a lower incidence of complete remission duration in patients with intermediate cytogenetics, but not in those with unfavorable cytogenetics. Intermediate cytogenetic patients with FLT3 mutation also fared better respectively when p-GSK3α/β levels were lower. Phosphorylated GSK3α/β expression was compared and contrasted with that of 229 related cell cycle arrest and/or apoptosis proteins. Consistent with p-GSK3α/β as an indicator of AKT activation, RPPA revealed that p-GSK3α/β positively correlated with phosphorylation of AKT, BAD, and P70S6K, and negatively correlated with β-catenin and FOXO3A. PKCδ also positively correlated with p-GSK3α/β expression, suggesting crosstalk between the AKT and PKC signaling pathways in AML cells.

CONCLUSIONS: These findings suggest that AKT-mediated phosphorylation of GSK3α/β may be beneficial to AML cell survival, and hence detrimental to the overall survival of AML patients. Intrinsically, p-GSK3α/β may serve as an important adverse prognostic factor for a subset of AML patients.

Keywords: AKT; GSK3; Leukemia; PKC delta; RPPA; Signal transduction

References

  1. Mol Cancer Ther. 2006 Oct;5(10):2512-21 - PubMed
  2. Biochem Pharmacol. 2013 Jul 15;86(2):191-9 - PubMed
  3. Clin Cancer Res. 2010 Mar 15;16(6):1865-74 - PubMed
  4. Leukemia. 2011 Nov;25(11):1711-7 - PubMed
  5. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2569-74 - PubMed
  6. Biochem J. 2011 Jul 15;437(2):335-44 - PubMed
  7. Expert Opin Investig Drugs. 2009 Sep;18(9):1333-49 - PubMed
  8. Leukemia. 2011 Jul;25(7):1064-79 - PubMed
  9. J Cell Sci. 2010 Mar 15;123(Pt 6):861-70 - PubMed
  10. Leukemia. 2014 Jan;28(1):15-33 - PubMed
  11. Blood. 2006 Oct 1;108(7):2358-65 - PubMed
  12. Bioinformatics. 2007 Aug 1;23(15):1986-94 - PubMed
  13. Cell. 2007 Jun 29;129(7):1415-26 - PubMed
  14. J Biol Chem. 2011 Oct 21;286(42):36215-27 - PubMed
  15. Bioinformatics. 2009 Jun 1;25(11):1384-9 - PubMed
  16. Cancer Cell. 2010 Jun 15;17(6):597-608 - PubMed
  17. Semin Oncol. 2008 Aug;35(4):336-45 - PubMed
  18. Cancer Res. 2013 Feb 15;73(4):1340-51 - PubMed
  19. Nat Rev Drug Discov. 2014 Jan;13(1):63-79 - PubMed
  20. EMBO J. 1995 Dec 15;14(24):6148-56 - PubMed
  21. Cell. 2011 Sep 2;146(5):697-708 - PubMed
  22. Br J Pharmacol. 2009 Mar;156(6):885-98 - PubMed
  23. PLoS One. 2013 Oct 24;8(10):e78453 - PubMed
  24. Cancer Treat Rev. 2010 Apr;36(2):142-50 - PubMed
  25. ScientificWorldJournal. 2010 Nov 16;10:2272-84 - PubMed
  26. Nature. 1995 Dec 21-28;378(6559):785-9 - PubMed
  27. Cell Cycle. 2009 Dec 15;8(24):4032-9 - PubMed
  28. Blood. 2009 Jan 1;113(1):154-64 - PubMed
  29. J Biol Chem. 2010 Dec 10;285(50):39096-107 - PubMed
  30. Mol Cell. 2006 Oct 20;24(2):185-97 - PubMed
  31. Leukemia. 2006 Jun;20(6):911-28 - PubMed
  32. Mol Cancer Res. 2013 May;11(5):443-55 - PubMed
  33. Oncotarget. 2010 Jun;1(2):89-103 - PubMed
  34. Mol Cancer Ther. 2010 Jul;9(7):1956-67 - PubMed
  35. Cancer Treat Res. 2010;145:197-217 - PubMed
  36. J Signal Transduct. 2010 Jan 1;2010:584657 - PubMed
  37. J Clin Invest. 2012 Mar;122(3):935-47 - PubMed
  38. Cell Signal. 2008 Oct;20(10):1697-704 - PubMed
  39. PLoS One. 2013;8(1):e54122 - PubMed

Publication Types

Grant support