Display options
Share it on

Front Physiol. 2016 Feb 02;7:16. doi: 10.3389/fphys.2016.00016. eCollection 2016.

Heart Rate and Extracellular Sodium and Potassium Modulation of Gap Junction Mediated Conduction in Guinea Pigs.

Frontiers in physiology

Michael Entz, Sharon A George, Michael J Zeitz, Tristan Raisch, James W Smyth, Steven Poelzing

Affiliations

  1. Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA.
  2. Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State University Roanoke, VA, USA.
  3. Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA.
  4. Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA.
  5. Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA.

PMID: 26869934 PMCID: PMC4735342 DOI: 10.3389/fphys.2016.00016

Abstract

BACKGROUND: Recent studies suggested that cardiac conduction in murine hearts with narrow perinexi and 50% reduced connexin43 (Cx43) expression is more sensitive to relatively physiological changes of extracellular potassium ([K(+)]o) and sodium ([Na(+)]o).

PURPOSE: Determine whether similar [K(+)]o and [Na(+)]o changes alter conduction velocity (CV) sensitivity to pharmacologic gap junction (GJ) uncoupling in guinea pigs.

METHODS: [K(+)]o and [Na(+)]o were varied in Langendorff perfused guinea pig ventricles (Solution A: [K(+)]o = 4.56 and [Na(+)]o = 153.3 mM. Solution B: [K(+)]o = 6.95 and [Na(+)]o = 145.5 mM). Gap junctions were inhibited with carbenoxolone (CBX) (15 and 30 μM). Epicardial CV was quantified by optical mapping. Perinexal width was measured with transmission electron microscopy. Total and phosphorylated Cx43 were evaluated by western blotting.

RESULTS: Solution composition did not alter CV under control conditions or with 15μM CBX. Decreasing the basic cycle length (BCL) of pacing from 300 to 160 ms decreased CV uniformly with both solutions. At 30 μM CBX, a change in solution did not alter CV either longitudinally or transversely at BCL = 300 ms. However, reducing BCL to 160 ms caused CV to decrease more in hearts perfused with Solution B than A. Solution composition did not alter perinexal width, nor did it change total or phosphorylated serine 368 Cx43 expression. These data suggest that the solution dependent CV changes were independent of altered perinexal width or GJ coupling. Action potential duration was always shorter in hearts perfused with Solution B than A, independent of pacing rate and/or CBX concentration.

CONCLUSIONS: Increased heart rate and GJ uncoupling can unmask small CV differences caused by changing [K(+)]o and [Na(+)]o. These data suggest that modulating extracellular ionic composition may be a novel anti-arrhythmic target in diseases with abnormal GJ coupling, particularly when heart rate cannot be controlled.

Keywords: cardiac conduction; electrophysiology; ephaptic coupling; gap junction

References

  1. Pflugers Arch. 2015 Oct;467(10):2093-105 - PubMed
  2. Ann N Y Acad Sci. 2007 Apr;1101:72-84 - PubMed
  3. Physiol Rev. 2001 Oct;81(4):1791-826 - PubMed
  4. Heart Rhythm. 2007 Sep;4(9):1183-93 - PubMed
  5. Nat Neurosci. 2011 Feb;14(2):217-23 - PubMed
  6. Circ Res. 1987 Aug;61(2):271-9 - PubMed
  7. Traffic. 2014 Jun;15(6):684-99 - PubMed
  8. Channels (Austin). 2011 May-Jun;5(3):236-40 - PubMed
  9. Circ Res. 2002 Dec 13;91(12):1176-82 - PubMed
  10. Circ Res. 1982 Nov;51(5):637-51 - PubMed
  11. Pflugers Arch. 1992 Feb;420(2):180-6 - PubMed
  12. Pflugers Arch. 1989;414 Suppl 1:S169-70 - PubMed
  13. Trends Cardiovasc Med. 2013 Aug;23(6):222-8 - PubMed
  14. Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H619-27 - PubMed
  15. Bull Math Biol. 2010 Aug;72(6):1408-24 - PubMed
  16. Ann Biomed Eng. 2000 Aug;28(8):951-7 - PubMed
  17. Physiol Rev. 1989 Oct;69(4):1049-169 - PubMed
  18. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6463-8 - PubMed
  19. Biophys J. 1988 May;53(5):809-18 - PubMed
  20. J Electrocardiol. 2000;33 Suppl:23-31 - PubMed
  21. IEEE Trans Biomed Eng. 2013 Feb;60(2):576-82 - PubMed
  22. J Neurosci. 2006 Feb 1;26(5):1378-85 - PubMed
  23. Circ Res. 1987 Dec;61(6):815-23 - PubMed
  24. Cardiovasc Res. 2005 Jul 1;67(1):77-86 - PubMed
  25. Am J Physiol. 1989 Jul;257(1 Pt 2):H179-89 - PubMed
  26. Circ Res. 1985 May;56(5):696-703 - PubMed
  27. J Neurosci. 2003 May 1;23(9):3588-96 - PubMed
  28. IEEE Eng Med Biol Mag. 2002 Jan-Feb;21(1):77-89 - PubMed
  29. Am J Physiol Heart Circ Physiol. 2004 May;286(5):H2001-9 - PubMed
  30. Acta Physiol (Oxf). 2013 Feb;207(2):280-9 - PubMed
  31. Biophys J. 2010 May 19;98(10):2091-101 - PubMed
  32. Biophys J. 2014 Feb 18;106(4):925-31 - PubMed
  33. Circ Res. 1981 Jan;48(1):39-54 - PubMed
  34. Heart Rhythm. 2012 Aug;9(8):1331-4 - PubMed
  35. Cardiovasc Res. 2003 Nov 1;60(2):288-97 - PubMed
  36. Chaos. 2015 Apr;25(4):043118 - PubMed
  37. Nature. 2012 Dec 6;492(7427):66-71 - PubMed
  38. Mol Cell Biochem. 2003 Jan;242(1-2):135-44 - PubMed
  39. Front Hum Neurosci. 2013 Oct 23;7:690 - PubMed
  40. Circ Res. 1997 Nov;81(5):727-41 - PubMed
  41. Circ Res. 1979 Jun;44(6):800-14 - PubMed
  42. Prog Cardiovasc Dis. 2006 Jul-Aug;49(1):26-41 - PubMed
  43. Circ Res. 1987 Jan;60(1):93-101 - PubMed
  44. Circ Res. 1998 Oct 19;83(8):781-94 - PubMed
  45. Cardiovasc Res. 2004 May 1;62(2):368-77 - PubMed
  46. Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H278-86 - PubMed
  47. Circulation. 1996 Feb 1;93(3):603-13 - PubMed
  48. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20935-40 - PubMed
  49. Annu Rev Biophys Bioeng. 1984;13:373-98 - PubMed
  50. Exp Cell Res. 1996 Jan 10;222(1):48-53 - PubMed
  51. IEEE Trans Biomed Eng. 1998 May;45(5):563-71 - PubMed
  52. Circ Res. 1982 Nov;51(5):614-23 - PubMed
  53. Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H262-9 - PubMed
  54. J Neurochem. 2005 Mar;92(5):1033-43 - PubMed
  55. Pflugers Arch. 2015 Nov;467(11):2287-97 - PubMed
  56. Circ Res. 2006 Jun 23;98(12):1538-46 - PubMed
  57. J Mol Cell Cardiol. 1987 Oct;19 Suppl 5:35-44 - PubMed
  58. Glia. 2006 Nov 15;54(7):758-73 - PubMed
  59. PLoS One. 2011;6(6):e20310 - PubMed
  60. Am J Physiol Heart Circ Physiol. 2004 Oct;287(4):H1762-70 - PubMed
  61. J Neurosci. 2001 Oct 15;21(20):RC173 - PubMed

Publication Types