Display options
Share it on

Cytotechnology. 2016 Oct;68(5):2193-206. doi: 10.1007/s10616-015-9942-1. Epub 2016 Jan 16.

Culture of neural cells of the eyestalk of a mangrove crab is optimized on poly-L-ornithine substrate.

Cytotechnology

Inês Júlia Ribas Wajsenzon, Litia Alves de Carvalho, Adriano Biancalana, Wagner Antönio Barbosa da Silva, Claudia Dos Santos Mermelstein, Elizabeth Giestal de Araujo, Silvana Allodi

Affiliations

  1. Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  2. Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco G2-001, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
  3. Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  4. Neurology Department of Masssachusetts General Hospital, Harvard NeuroDiscovery Center Harvard Medical School, Boston, MA, USA.
  5. Universidade Federal do Pará, Campus Universitário do Marajó/Soure, Ilha de Marajó, PA, Brazil.
  6. Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  7. Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
  8. Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. [email protected].
  9. Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. [email protected].
  10. Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco G2-001, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil. [email protected].

PMID: 26779908 PMCID: PMC5023563 DOI: 10.1007/s10616-015-9942-1

Abstract

Although there is a considerable demand for cell culture protocols from invertebrates for both basic and applied research, few attempts have been made to culture neural cells of crustaceans. We describe an in vitro method that permits the proliferation, growth and characterization of neural cells from the visual system of an adult decapod crustacean. We explain the coating of the culture plates with different adhesive substrates, and the adaptation of the medium to maintain viable neural cells for up to 7 days. Scanning electron microscopy allowed us to monitor the conditioned culture medium to assess cell morphology and cell damage. We quantified cells in the different substrates and performed statistical analyses. Of the most commonly used substrates, poly-L-ornithine was found to be the best for maintaining neural cells for 7 days. We characterized glial cells and neurons, and observed cell proliferation using immunocytochemical reactions with specific markers. This protocol was designed to aid in conducting investigations of adult crustacean neural cells in culture. We believe that an advantage of this method is the potential for adaptation to neural cells from other arthropods and even other groups of invertebrates.

Keywords: Cell culture; Glia; Immunocytochemistry; Invertebrates; Neurons; Visual system

References

  1. Biol Cell. 2001 Nov;93(5):293-9 - PubMed
  2. Micron. 2002;33(7-8):627-37 - PubMed
  3. Glia. 2003 Sep;43(3):292-8 - PubMed
  4. J Comp Neurol. 2003 Sep 29;464(4):449-62 - PubMed
  5. Chem Senses. 2004 Mar;29(3):179-87 - PubMed
  6. Cell Tissue Res. 2004 Dec;318(3):609-15 - PubMed
  7. Biol Cell. 2004 Dec;96(9):727-34 - PubMed
  8. Glia. 2006 Apr 15;53(6):612-20 - PubMed
  9. Invert Neurosci. 2006 Sep;6(3):95-103 - PubMed
  10. Cell Tissue Res. 2007 Jul;329(1):159-68 - PubMed
  11. J Mol Histol. 2007 Dec;38(6):527-42 - PubMed
  12. J Neurosci Methods. 2007 Sep 30;165(2):191-7 - PubMed
  13. Microsc Res Tech. 2008 Mar;71(3):214-9 - PubMed
  14. Neuron. 2008 Nov 6;60(3):430-40 - PubMed
  15. Cytotechnology. 2008 Mar;56(3):161-9 - PubMed
  16. Nature. 2009 Feb 5;457(7230):675-7 - PubMed
  17. Dev Neurobiol. 2009 Jun;69(7):415-36 - PubMed
  18. Cell Tissue Res. 2010 Mar;339(3):625-37 - PubMed
  19. Toxicol In Vitro. 2010 Jun;24(4):1053-63 - PubMed
  20. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4685-9 - PubMed
  21. In Vitro Cell Dev Biol Anim. 2010 Sep;46(8):708-17 - PubMed
  22. In Vitro Cell Dev Biol Anim. 2010 Oct;46(9):801-10 - PubMed
  23. Cell Tissue Res. 2010 Nov;342(2):179-89 - PubMed
  24. Mar Environ Res. 2011 Apr;71(3):169-77 - PubMed
  25. Glia. 2011 Sep;59(9):1215-36 - PubMed
  26. Eur J Neurosci. 2011 Sep;34(6):870-83 - PubMed
  27. J Mol Histol. 2012 Aug;43(4):405-19 - PubMed
  28. Stem Cells Dev. 2012 Nov 20;21(17):3173-86 - PubMed
  29. PLoS One. 2012;7(6):e39267 - PubMed
  30. Stem Cells Dev. 2013 Apr 1;22(7):1027-41 - PubMed
  31. Biochem Biophys Res Commun. 2013 Jan 11;430(2):512-8 - PubMed
  32. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7195-9 - PubMed
  33. J Cell Biol. 2013 Nov 11;203(3):395-405 - PubMed
  34. Biochem Biophys Res Commun. 2014 May 2;447(2):299-303 - PubMed
  35. Mult Scler Int. 2014;2014:285245 - PubMed
  36. J Neurosci. 2015 Jan 7;35(1):386-95 - PubMed
  37. Aquat Toxicol. 2015 Mar;160:151-62 - PubMed
  38. Biol Bull. 1992 Oct;183(2):304-326 - PubMed
  39. Prog Neurobiol. 1979;12(2):115-79 - PubMed
  40. Cell Tissue Res. 1977 Dec 28;185(4):515-25 - PubMed
  41. J Neurosci. 1994 Jan;14(1):384-98 - PubMed
  42. J Neurosci. 1997 Apr 1;17(7):2383-90 - PubMed
  43. Neuroscience. 1997 Apr;77(3):921-31 - PubMed
  44. Brain Res. 1997 Jul 11;762(1-2):131-43 - PubMed

Publication Types