Display options
Share it on

Pharmaceuticals (Basel). 2011 Aug 05;4(8):1088-100. doi: 10.3390/ph4081088.

Beta-Blockers and Oxidative Stress in Patients with Heart Failure.

Pharmaceuticals (Basel, Switzerland)

Kazufumi Nakamura, Masato Murakami, Daiji Miura, Kei Yunoki, Kenki Enko, Masamichi Tanaka, Yukihiro Saito, Nobuhiro Nishii, Toru Miyoshi, Masashi Yoshida, Hiroki Oe, Norihisa Toh, Satoshi Nagase, Kunihisa Kohno, Hiroshi Morita, Hiromi Matsubara, Kengo F Kusano, Tohru Ohe, Hiroshi Ito

Affiliations

  1. Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. [email protected].
  2. Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
  3. Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
  4. Division of Cardiology, National Hospital Organization Okayama Medical Center, 1711-1 Tamasu, Kita-ku, Okayama 701-1192, Japan.

PMID: 26791643 PMCID: PMC4058661 DOI: 10.3390/ph4081088

Abstract

Oxidative stress has been implicated in the pathogenesis of heart failure. Reactive oxygen species (ROS) are produced in the failing myocardium, and ROS cause hypertrophy, apoptosis/cell death and intracellular Ca(2+) overload in cardiac myocytes. ROS also cause damage to lipid cell membranes in the process of lipid peroxidation. In this process, several aldehydes, including 4-hydroxy-2-nonenal (HNE), are generated and the amount of HNE is increased in the human failing myocardium. HNE exacerbates the formation of ROS, especially H₂O₂ and ·OH, in cardiomyocytes and subsequently ROS cause intracellular Ca(2+) overload. Treatment with beta-blockers such as metoprolol, carvedilol and bisoprolol reduces the levels of oxidative stress, together with amelioration of heart failure. This reduction could be caused by several possible mechanisms. First, the beta-blocking effect is important, because catecholamines such as isoproterenol and norepinephrine induce oxidative stress in the myocardium. Second, anti-ischemic effects and negative chronotropic effects are also important. Furthermore, direct antioxidative effects of carvedilol contribute to the reduction of oxidative stress. Carvedilol inhibited HNE-induced intracellular Ca(2+) overload. Beta-blocker therapy is a useful antioxidative therapy in patients with heart failure.

Keywords: beta-blocker; heart failure; oxidative stress

References

  1. Eur J Heart Fail. 2011 Jan;13(1):29-36 - PubMed
  2. Circulation. 2000 Jan 18;101(2):122-4 - PubMed
  3. J Card Fail. 2009 Oct;15(8):709-16 - PubMed
  4. J Am Coll Cardiol. 2009 Oct 13;54(16):1491-9 - PubMed
  5. J Card Fail. 2005 Aug;11(6):473-80 - PubMed
  6. Cardiovasc Res. 2002 Aug 1;55(2):239-49 - PubMed
  7. J Card Fail. 2005 Mar;11(2):117-23 - PubMed
  8. Br Heart J. 1991 May;65(5):245-8 - PubMed
  9. Am J Physiol. 1999 Mar;276(3 Pt 2):H935-43 - PubMed
  10. Hypertension. 2006 Oct;48(4):677-84 - PubMed
  11. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7432-7 - PubMed
  12. Lancet. 2006 Jan 28;367(9507):356-67 - PubMed
  13. Free Radic Biol Med. 1991;11(1):81-128 - PubMed
  14. Circulation. 1998 Apr 28;97(16):1536-9 - PubMed
  15. Science. 2001 Jun 15;292(5524):2083-6 - PubMed
  16. Circulation. 1998 Aug 25;98(8):794-9 - PubMed
  17. J Clin Invest. 1995 Nov;96(5):2247-59 - PubMed
  18. Life Sci. 1989;45(1):71-6 - PubMed
  19. Circulation. 2000 Nov 14;102(20 Suppl 4):IV14-23 - PubMed
  20. Circ Res. 2000 Mar 17;86(5):494-501 - PubMed
  21. Circ J. 2006 Aug;70(8):1001-5 - PubMed
  22. Circulation. 1999 Jul 27;100(4):346-53 - PubMed
  23. Free Radic Biol Med. 2011 Sep 1;51(5):978-92 - PubMed
  24. Circulation. 2000 Jan 4-11;101(1):33-9 - PubMed
  25. Eur J Heart Fail. 2003 Mar;5(2):171-4 - PubMed
  26. Eur Heart J. 1993 Nov;14(11):1493-8 - PubMed
  27. Pathol Int. 1999 Feb;49(2):91-102 - PubMed
  28. Arterioscler Thromb Vasc Biol. 2003 Apr 1;23 (4):615-21 - PubMed
  29. J Am Coll Cardiol. 2011 Feb 1;57(5):601-11 - PubMed
  30. J Biol Chem. 1999 Jan 22;274(4):2234-42 - PubMed
  31. Adv Exp Med Biol. 1983;161:391-401 - PubMed
  32. Prog Lipid Res. 2003 Jul;42(4):318-43 - PubMed
  33. Circ Heart Fail. 2011 Jan;4(1):59-64 - PubMed
  34. J Am Coll Cardiol. 1996 Aug;28(2):506-14 - PubMed
  35. Curr Hypertens Rep. 2007 Aug;9(4):269-77 - PubMed
  36. Circ Res. 1999 Aug 20;85(4):357-63 - PubMed
  37. J Pharmacol Exp Ther. 1992 Oct;263(1):92-8 - PubMed
  38. J Biol Chem. 2001 Apr 13;276(15):12076-83 - PubMed
  39. Circ Res. 2001 Aug 31;89(5):453-60 - PubMed
  40. Circ Res. 1995 Feb;76(2):293-304 - PubMed
  41. Nature. 2011 Jul 06;475(7354):106-9 - PubMed
  42. Circulation. 2002 Jun 18;105(24):2867-71 - PubMed
  43. Cardiovasc Pathol. 2011 Jan-Feb;20(1):e37-42 - PubMed
  44. Nature. 2005 Mar 31;434(7033):658-62 - PubMed
  45. Physiol Rev. 2010 Jul;90(3):1013-62 - PubMed
  46. Circ Res. 1999 Jul 23;85(2):147-53 - PubMed
  47. J Am Coll Cardiol. 1992 Apr;19(5):918-25 - PubMed
  48. Nat Med. 2003 Oct;9(10):1300-5 - PubMed
  49. Am J Physiol Cell Physiol. 2002 Apr;282(4):C926-34 - PubMed
  50. J Biol Chem. 1991 Feb 5;266(4):2354-61 - PubMed
  51. J Biol Chem. 1994 Dec 2;269(48):30553-60 - PubMed
  52. Curr Opin Cardiol. 1997 May;12(3):259-64 - PubMed
  53. Circulation. 1999 May 25;99(20):2645-51 - PubMed
  54. J Mol Cell Cardiol. 2002 Apr;34(4):379-88 - PubMed
  55. J Cardiovasc Pharmacol. 2003 Dec;42 Suppl 1:S67-70 - PubMed

Publication Types