Display options
Share it on

PLoS Comput Biol. 2016 Jan 21;12(1):e1004681. doi: 10.1371/journal.pcbi.1004681. eCollection 2016 Jan.

Model-Based Comprehensive Analysis of School Closure Policies for Mitigating Influenza Epidemics and Pandemics.

PLoS computational biology

Laura Fumanelli, Marco Ajelli, Stefano Merler, Neil M Ferguson, Simon Cauchemez

Affiliations

  1. Bruno Kessler Foundation, Trento, Italy.
  2. MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, United Kingdom.
  3. Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France.

PMID: 26796333 PMCID: PMC4721867 DOI: 10.1371/journal.pcbi.1004681

Abstract

School closure policies are among the non-pharmaceutical measures taken into consideration to mitigate influenza epidemics and pandemics spread. However, a systematic review of the effectiveness of alternative closure policies has yet to emerge. Here we perform a model-based analysis of four types of school closure, ranging from the nationwide closure of all schools at the same time to reactive gradual closure, starting from class-by-class, then grades and finally the whole school. We consider policies based on triggers that are feasible to monitor, such as school absenteeism and national ILI surveillance system. We found that, under specific constraints on the average number of weeks lost per student, reactive school-by-school, gradual, and county-wide closure give comparable outcomes in terms of optimal infection attack rate reduction, peak incidence reduction or peak delay. Optimal implementations generally require short closures of one week each; this duration is long enough to break the transmission chain without leading to unnecessarily long periods of class interruption. Moreover, we found that gradual and county closures may be slightly more easily applicable in practice as they are less sensitive to the value of the excess absenteeism threshold triggering the start of the intervention. These findings suggest that policy makers could consider school closure policies more diffusely as response strategy to influenza epidemics and pandemics, and the fact that some countries already have some experience of gradual or regional closures for seasonal influenza outbreaks demonstrates that logistic and feasibility challenges of school closure strategies can be to some extent overcome.

References

  1. Proc Biol Sci. 2010 Feb 22;277(1681):557-65 - PubMed
  2. J Infect Dis. 2010 Sep 15;202(6):877-80 - PubMed
  3. JAMA. 2007 Aug 8;298(6):644-54 - PubMed
  4. BMC Infect Dis. 2009;9:187 - PubMed
  5. Lancet Infect Dis. 2009 Aug;9(8):473-81 - PubMed
  6. Nature. 2006 Jul 27;442(7101):448-52 - PubMed
  7. Nature. 2008 Apr 10;452(7188):750-4 - PubMed
  8. PLoS One. 2008;3(3):e1790 - PubMed
  9. Emerg Infect Dis. 2011 Feb;17(2):245-7 - PubMed
  10. Proc Biol Sci. 2011 Sep 22;278(1719):2753-60 - PubMed
  11. PLoS Comput Biol. 2011 Sep;7(9):e1002205 - PubMed
  12. PLoS Biol. 2010 Feb;8(2):e1000316 - PubMed
  13. Science. 2009 Jun 19;324(5934):1557-61 - PubMed
  14. BMC Infect Dis. 2014;14:695 - PubMed
  15. Science. 2013 Jul 26;341(6144):410-4 - PubMed
  16. Emerg Infect Dis. 2006 Nov;12(11):1671-81 - PubMed
  17. J Sch Health. 2012 Mar;82(3):123-30 - PubMed
  18. Epidemics. 2011 Jun;3(2):103-8 - PubMed
  19. Sci Rep. 2014;4:7218 - PubMed
  20. Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13422-7 - PubMed
  21. Science. 2012 Jun 22;336(6088):1534-41 - PubMed
  22. Emerg Infect Dis. 2009 Oct;15(10):1685 - PubMed
  23. BMC Infect Dis. 2014;14:207 - PubMed
  24. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44 - PubMed
  25. Ann Intern Med. 2012 Feb 7;156(3):173-81 - PubMed
  26. BMC Infect Dis. 2010;10:221 - PubMed
  27. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7582-7 - PubMed
  28. BMC Public Health. 2008;8:135 - PubMed
  29. Vaccine. 2010 Mar 11;28(12):2370-84 - PubMed
  30. Science. 2005 Aug 12;309(5737):1083-7 - PubMed
  31. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2825-30 - PubMed
  32. Emerg Infect Dis. 2012 May;18(5):758-66 - PubMed
  33. Nature. 2005 Sep 8;437(7056):209-14 - PubMed
  34. PLoS One. 2014;9(5):e97297 - PubMed
  35. PLoS Curr. 2009 Oct 23;1:RRN1119 - PubMed
  36. Epidemiol Infect. 2008 Feb;136(2):166-79 - PubMed
  37. PLoS One. 2008;3(12):e4005 - PubMed
  38. BMC Infect Dis. 2014;14:480 - PubMed
  39. PLoS Med. 2007 Jan;4(1):e13 - PubMed
  40. PLoS Med. 2008 Mar 25;5(3):e74 - PubMed
  41. Expert Rev Respir Med. 2011 Oct;5(5):597-9 - PubMed
  42. Wkly Epidemiol Rec. 2009 Jul 3;84(27):269-71 - PubMed
  43. PLoS Comput Biol. 2012;8(9):e1002673 - PubMed
  44. BMJ Open. 2013 Feb 26;3(2):null - PubMed
  45. BMC Infect Dis. 2009;9:117 - PubMed
  46. Lancet Respir Med. 2014 Jun;2(6):445-54 - PubMed
  47. Emerg Infect Dis. 2010 Aug;16(8):1309-11 - PubMed
  48. Emerg Infect Dis. 2010 Mar;16(3):538-41 - PubMed
  49. Epidemiol Infect. 2011 Jan;139(1):68-79 - PubMed
  50. Epidemiology. 2014 Mar;25(2):203-6 - PubMed
  51. PLoS Med. 2013 Oct;10(10):e1001527 - PubMed
  52. Science. 2013 Jul 12;341(6142):183-6 - PubMed
  53. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5935-40 - PubMed
  54. Nature. 2012 Jun 21;486(7403):420-8 - PubMed
  55. J Public Health Manag Pract. 2010 May-Jun;16(3):252-61 - PubMed

MeSH terms

Publication Types

Grant support