Display options
Share it on

Inorg Chem. 2016 Mar 21;55(6):2941-5. doi: 10.1021/acs.inorgchem.5b02821. Epub 2016 Mar 01.

Lithium Diffusion Pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) Superionic Conductor.

Inorganic chemistry

Mykhailo Monchak, Thomas Hupfer, Anatoliy Senyshyn, Hans Boysen, Dmitry Chernyshov, Thomas Hansen, Karl G Schell, Ethel C Bucharsky, Michael J Hoffmann, Helmut Ehrenberg

Affiliations

  1. Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM) , 76131 Karlsruhe, Germany.
  2. Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München , Lichtenbergstrasse 1, D-85748 Garching, Germany.
  3. Department für Geo- und Umweltwissenschaften, Sektion Kristallographie, LMU München , Am Coulombwall 6, D-85748 Garching, Germany.
  4. Swiss-Norwegian Beamlines, ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
  5. Institut Max von Laue-Paul Langevin (ILL) , 71 Avenue des Martyrs, 38043 Grenoble Cedex 9, France.

PMID: 26930220 DOI: 10.1021/acs.inorgchem.5b02821

Abstract

The Al-substituted LiTi2(PO4)3 powders Li(1+x)Al(x)Ti(2-x)(PO4)3 (LATP) were successfully prepared by a water-based sol-gel process with subsequent calcination and sintering. The crystal structure of obtained samples was characterized at different temperatures using high-resolution synchrotron-based X-ray and neutron powder diffraction. Possible lithium diffusion pathways were initially evaluated using the difference bond-valence approach. Experimental 3D lithium diffusion pathway in LATP was extracted from the negative nuclear density maps reconstructed by the maximum entropy method. Evaluation of the energy landscape determining the lithium diffusion process in NASICON-type superionic conductor is shown for the first time.

Publication Types