Display options
Share it on

Epigenetics Chromatin. 2016 Feb 29;9:9. doi: 10.1186/s13072-016-0059-3. eCollection 2016.

Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in Drosophila.

Epigenetics & chromatin

Hillary K Graves, Pingping Wang, Matthew Lagarde, Zhihong Chen, Jessica K Tyler

Affiliations

  1. Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
  2. Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA.

PMID: 26933451 PMCID: PMC4772521 DOI: 10.1186/s13072-016-0059-3

Abstract

BACKGROUND: Understanding the function of histone post-translational modifications is the key to deciphering how genomic activities are regulated. Among the least well-understood histone modifications in vivo are those that occur on the surface of the globular domain of histones, despite their causing the most profound structural alterations of the nucleosome in vitro. We utilized a Drosophila system to replace the canonical histone genes with mutated histone transgenes.

RESULTS: Mutations predicted to mimic or prevent acetylation on histone H3 lysine (K) 56, K115, K122, and both K115/K122, or to prevent or mimic phosphorylation on H3 threonine (T) 118 and T80, all caused lethality, with the exception of K122R mutants. T118 mutations caused profound growth defects within wing discs, while K115R, K115Q, K56Q, and the K115/K122 mutations caused more subtle growth defects. The H3 K56R and H3 K122R mutations caused no defects in growth, differentiation, or transcription within imaginal discs, indicating that H3 K56 acetylation and K122 acetylation are dispensable for these functions. In agreement, we found the antibody to H3 K122Ac, which was previously used to imply a role for H3 K122Ac in transcription in metazoans, to be non-specific in vivo.

CONCLUSIONS: Our data suggest that chromatin structural perturbations caused by acetylation of K56, K115, or K122 and phosphorylation of T80 or T118 are important for key developmental processes.

Keywords: Development; Drosophila; Histone H3 globular domain; Histone post-translational modifications; Imaginal discs

References

  1. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11493-8 - PubMed
  2. Cell Cycle. 2014;13(3):440-52 - PubMed
  3. Science. 2013 Feb 8;339(6120):698-9 - PubMed
  4. Mol Cell. 2009 Dec 25;36(6):1086-94 - PubMed
  5. Cell. 2006 Nov 3;127(3):495-508 - PubMed
  6. Development. 2000 Feb;127(4):851-60 - PubMed
  7. Science. 2014 Dec 5;346(6214):1258236 - PubMed
  8. Cold Spring Harb Symp Quant Biol. 1978;42 Pt 2:1047-51 - PubMed
  9. J Biol Chem. 2012 Nov 30;287(49):41469-80 - PubMed
  10. Cell. 1998 Oct 30;95(3):331-41 - PubMed
  11. J Biol Chem. 2006 Dec 8;281(49):37270-4 - PubMed
  12. J Skin Cancer. 2012;2012:823534 - PubMed
  13. Cell. 2008 Jul 25;134(2):244-55 - PubMed
  14. PLoS One. 2013;8(2):e51765 - PubMed
  15. Development. 1993 Apr;117(4):1223-37 - PubMed
  16. Nature. 2000 Jan 6;403(6765):41-5 - PubMed
  17. Nat Rev Genet. 2008 Nov;9(11):843-54 - PubMed
  18. Nucleic Acids Res. 2012 Nov 1;40(20):10215-27 - PubMed
  19. Sci Rep. 2012;2:220 - PubMed
  20. Nature. 2009 May 7;459(7243):113-7 - PubMed
  21. Science. 2006 Dec 15;314(5806):1747-51 - PubMed
  22. Dev Biol. 2011 Aug 15;356(2):576-87 - PubMed
  23. Nat Protoc. 2006;1(4):1725-31 - PubMed
  24. J Am Soc Mass Spectrom. 2004 Jan;15(1):77-86 - PubMed
  25. Methods Mol Biol. 2009;559:343-56 - PubMed
  26. Mol Cell. 2012 Apr 13;46(1):7-17 - PubMed
  27. Cell. 2007 Feb 23;128(4):693-705 - PubMed
  28. Cell Cycle. 2012 Jan 1;11(1):79-87 - PubMed
  29. Cell. 2008 Jul 25;134(2):231-43 - PubMed
  30. Cell Rep. 2015 Jun 9;11(9):1437-45 - PubMed
  31. Annu Rev Biochem. 2013;82:81-118 - PubMed
  32. Nucleic Acids Res. 2011 Aug;39(15):6465-74 - PubMed
  33. Chem Rev. 2015 Mar 25;115(6):2274-95 - PubMed
  34. PLoS One. 2011;6(6):e19778 - PubMed
  35. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9000-5 - PubMed
  36. Trends Genet. 2016 Jan;32(1):42-56 - PubMed
  37. Mol Cell Biol. 2005 Nov;25(22):10060-70 - PubMed
  38. Curr Biol. 2012 Dec 4;22(23):2253-7 - PubMed
  39. Mol Cell. 2009 Oct 9;36(1):153-63 - PubMed
  40. Dev Cell. 2015 Feb 9;32(3):373-86 - PubMed
  41. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12711-6 - PubMed
  42. Mol Cell. 2009 Feb 27;33(4):417-27 - PubMed
  43. EMBO J. 2015 Jul 14;34(14 ):1889-904 - PubMed
  44. Mol Cell Biol. 2005 Mar;25(5):1846-59 - PubMed
  45. Cell. 2013 Feb 14;152(4):859-72 - PubMed
  46. Sci Signal. 2010 Jan 12;3(104):ra3 - PubMed
  47. EMBO Rep. 2010 Oct;11(10):772-6 - PubMed
  48. Genes Dev. 1995 Nov 15;9(22):2770-9 - PubMed
  49. EMBO J. 2004 Jan 28;23(2):260-71 - PubMed
  50. Genes Dev. 2015 Jul 15;29(14 ):1487-92 - PubMed
  51. Elife. 2016 Feb 16;5:e11402 - PubMed

Publication Types

Grant support