Display options
Share it on

Chin Med. 2016 Feb 27;11:7. doi: 10.1186/s13020-016-0078-9. eCollection 2016.

Radix Puerariae lobatae (Gegen) suppresses the anticoagulation effect of warfarin: a pharmacokinetic and pharmacodynamics study.

Chinese medicine

Beikang Ge, Zhen Zhang, Zhong Zuo

Affiliations

  1. School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

PMID: 26925159 PMCID: PMC4769563 DOI: 10.1186/s13020-016-0078-9

Abstract

BACKGROUND: Radix Salvia miltiorrhiza (Danshen) and Radix Puerariae lobatae (Gegen) are used in Traditional Chinese Medicine to treat cardiovascular diseases. However, adverse herb-drug interactions were observed between warfarin and herbal remedies containing Danshen and Gegen. This study aims to investigate the pharmacokinetic and pharmacodynamic interactions between warfarin and the different components found in Danshen and Gegen.

METHODS: Sixty Sprague-Dawley rats were used to investigate the effects of warfarin (0.2 mg/kg), Danshen (240 or 480 mg/kg) and Gegen (240 or 480 mg/kg) both in isolation and combination. The rats in the warfarin and Danshen/Gegen combination groups were given an oral dose of Danshen or Gegen 2 h after being given an oral dose of warfarin. After five consecutive days of treatment, the pharmacokinetic interactions between Danshen/Gegen and warfarin were investigated by simultaneously monitoring and comparing the cytochrome P450 (CYP) activities, mRNA and protein expression levels in the livers of the rats from the different treatment groups. The pharmacodynamic interactions were evaluated by monitoring and comparing the vitamin K epoxide reductase (VKOR) activities, mRNA and protein expression levels in the livers of rats from the different groups, as well as the thrombomodulin (TM) activities, mRNA and protein in the lungs of these animals. The rat plasma soluble thrombomodulin concentrations of the different treatment groups were also evaluated. Microsomes incubation, Real Time-Polymerase Chain Reaction and Western blot was applied respectively to study the activity, mRNA expression and protein expression of CYP, VKOR and TM.

RESULTS: The activities and expression levels of the CYP and VKOR enzymes in the warfarin-Gegen combination groups increased by nearly 30 % (P = 0.02) compared with the warfarin-alone group, whereas those of TM decreased by almost 25 % (P = 0.02). The administration of Danshen did not lead to any changes in the activities or the expression levels of the CYP, VKOR or TM enzymes compared with those of the control group. Gegen induced several warfarin-metabolizing CYP enzymes and neutralized the effects of warfarin towards VKOR and TM.

CONCLUSION: Gegen, rather than Danshen at the same tested dosage, offsets the anticoagulant effects of warfarin by accelerating the phase I liver metabolism of warfarin, as well as increasing the activity, mRNA and protein expression of VKOR while decreasing those of TM.

References

  1. Expert Opin Drug Metab Toxicol. 2006 Dec;2(6):875-94 - PubMed
  2. J Ethnopharmacol. 2014 Jul 3;154(3):672-86 - PubMed
  3. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  4. Eur J Drug Metab Pharmacokinet. 1992 Oct-Dec;17(4):257-62 - PubMed
  5. Xenobiotica. 1992 Jan;22(1):83-103 - PubMed
  6. J Appl Toxicol. 2008 May;28(4):524-9 - PubMed
  7. Circulation. 2003 Nov 18;108(20):2450-2 - PubMed
  8. PLoS One. 2013 May 09;8(5):e64255 - PubMed
  9. J Intern Med. 1997 Apr;241(4):337-9 - PubMed
  10. Pharm Res. 2013 Sep;30(9):2368-84 - PubMed
  11. FASEB J. 2008 Mar;22(3):659-61 - PubMed
  12. Phytochem Anal. 2008 Jul-Aug;19(4):368-75 - PubMed
  13. Thromb Res. 2007;119(6):769-75 - PubMed
  14. Clin Appl Thromb Hemost. 2012 Jun;18(3):289-93 - PubMed
  15. Drug Metab Dispos. 2006 Jun;34(6):1063-9 - PubMed
  16. J Clin Pharmacol. 2013 Aug;53(8):787-811 - PubMed
  17. J Pharmacol Exp Ther. 2001 Dec;299(3):921-7 - PubMed
  18. Mol Pharmacol. 1993 Feb;43(2):226-33 - PubMed
  19. Toxicol Appl Pharmacol. 2011 Apr 1;252(1):18-27 - PubMed
  20. J Ethnopharmacol. 2011 Oct 11;137(3):1457-61 - PubMed
  21. J Pharm Pharmacol. 2006 Apr;58(4):521-7 - PubMed
  22. Br J Haematol. 2005 Sep;130(5):777-80 - PubMed
  23. Ann Pharmacother. 2001 Apr;35(4):501-4 - PubMed
  24. Blood. 1990 Nov 15;76(10):2024-9 - PubMed
  25. Phytomedicine. 2010 Mar;17(3-4):219-26 - PubMed
  26. Phytomedicine. 2012 Jan 15;19(2):169-76 - PubMed
  27. Arch Pharm Res. 2010 Feb;33(2):243-6 - PubMed
  28. J Ethnopharmacol. 2011 Oct 31;138(1):60-6 - PubMed
  29. Kidney Int. 1992 May;41(5):1170-4 - PubMed
  30. J Biol Chem. 1982 Jan 25;257(2):859-64 - PubMed
  31. Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E753-60 - PubMed
  32. Int J Pharm. 2009 Sep 8;379(1):109-18 - PubMed
  33. Evid Based Complement Alternat Med. 2014;2014:957362 - PubMed
  34. Aust N Z J Med. 1995 Jun;25(3):258 - PubMed
  35. Thromb Haemost. 2004 Oct;92 (4):797-802 - PubMed
  36. J Altern Complement Med. 2009 Apr;15(4):415-21 - PubMed
  37. J Pharm Pharm Sci. 2001 May-Aug;4(2):176-84 - PubMed
  38. Life Sci. 2000 Nov 3;67(24):2997-3006 - PubMed
  39. J Ethnopharmacol. 2012 Sep 28;143(2):648-55 - PubMed
  40. Pharmacol Ther. 1997;73(1):67-74 - PubMed
  41. Heart Vessels. 2012 Jul;27(4):344-51 - PubMed
  42. Rejuvenation Res. 2011 Apr;14(2):173-84 - PubMed
  43. Acta Pharmacol Sin. 2004 Feb;25(2):129-36 - PubMed
  44. J Ethnopharmacol. 2012 Jun 1;141(2):742-53 - PubMed
  45. Int J Cardiol. 2007 Sep 14;121(1):9-22 - PubMed
  46. Biochem J. 1987 Jan 15;241(2):389-96 - PubMed
  47. J Nutr. 2006 Mar;136(3 Suppl):793S-795S - PubMed
  48. Ann Thorac Surg. 1998 Sep;66(3):941-2 - PubMed
  49. CPT Pharmacometrics Syst Pharmacol. 2014 Mar 26;3:e107 - PubMed
  50. Chest. 2001 Jan;119(1 Suppl):8S-21S - PubMed
  51. J Thromb Haemost. 2003 Jul;1(7):1515-24 - PubMed
  52. J Biochem Mol Toxicol. 2005;19(6):379-85 - PubMed

Publication Types