Display options
Share it on

ACS Nano. 2016 Apr 26;10(4):4695-703. doi: 10.1021/acsnano.6b01104. Epub 2016 Mar 28.

Highly Stable and Conductive Microcapsules for Enhancement of Joule Heating Performance.

ACS nano

Zhaoliang Zheng, Jidong Jin, Guang-Kui Xu, Jianli Zou, Ulrike Wais, Alison Beckett, Tobias Heil, Sean Higgins, Lunhui Guan, Ying Wang, Dmitry Shchukin

Affiliations

  1. Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom.
  2. Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, United Kingdom.
  3. International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University , Xi'an 710049, China.
  4. EM Unit, Department of Cellular & Molecular Physiology, University of Liverpool , Liverpool L69 3BX, United Kingdom.
  5. Nanoinvestigation Centre at Liverpool, University of Liverpool , Liverpool L69 3GL, United Kingdom.
  6. Centre for Materials Discovery, University of Liverpool , Liverpool L69 7ZD, United Kingdom.
  7. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002, China.

PMID: 27002594 PMCID: PMC4850502 DOI: 10.1021/acsnano.6b01104

Abstract

Nanocarbons show great promise for establishing the next generation of Joule heating systems, but suffer from the limited maximum temperature due to precociously convective heat dissipation from electrothermal system to surrounding environment. Here we introduce a strategy to eliminate such convective heat transfer by inserting highly stable and conductive microcapsules into the electrothermal structures. The microcapsule is composed of encapsulated long-chain alkanes and graphene oxide/carbon nanotube hybrids as core and shell material, respectively. Multiform carbon nanotubes in the microspheres stabilize the capsule shell to resist volume-change-induced rupture during repeated heating/cooling process, and meanwhile enhance the thermal conductance of encapsulated alkanes which facilitates an expeditious heat exchange. The resulting microcapsules can be homogeneously incorporated in the nanocarbon-based electrothermal structures. At a dopant of 5%, the working temperature can be enhanced by 30% even at a low voltage and moderate temperature, which indicates a great value in daily household applications. Therefore, the stable and conductive microcapsule may serve as a versatile and valuable dopant for varieties of heat generation systems.

Keywords: carbon nanotube; electrothermal; emulsification; encapsulation; graphene oxide; microcapsule; nanocarbon hybrids; ultrasound

References

  1. J Am Chem Soc. 2005 Jul 13;127(27):9830-8 - PubMed
  2. Adv Mater. 2013 Jan 4;25(1):13-30 - PubMed
  3. Science. 2008 Jul 18;321(5887):385-8 - PubMed
  4. Nature. 2003 Aug 7;424(6949):654-7 - PubMed
  5. Langmuir. 2011 Feb 1;27(3):1186-91 - PubMed
  6. Acc Chem Res. 2014 Aug 19;47(8):2446-56 - PubMed
  7. J Am Chem Soc. 2011 Apr 6;133(13):4940-7 - PubMed
  8. Langmuir. 2013 Nov 5;29(44):13527-34 - PubMed
  9. ACS Nano. 2012 Dec 21;6(12):10884-92 - PubMed
  10. Nano Lett. 2011 Dec 14;11(12):5154-8 - PubMed
  11. Nat Nanotechnol. 2013 Apr;8(4):235-46 - PubMed
  12. Science. 2008 Jun 6;320(5881):1308 - PubMed
  13. Nat Commun. 2011;2:289 - PubMed
  14. Nano Lett. 2006 Jan;6(1):96-100 - PubMed
  15. Nat Nanotechnol. 2008 May;3(5):270-4 - PubMed
  16. Nano Lett. 2013 Sep 11;13(9):4028-35 - PubMed
  17. ACS Nano. 2010 Nov 23;4(11):6557-64 - PubMed
  18. Small. 2015 Apr 17;11(15):1840-6 - PubMed
  19. Nano Lett. 2011 Jun 8;11(6):2259-63 - PubMed
  20. Adv Mater. 2013 May 14;25(18):2554-60 - PubMed
  21. Phys Rev Lett. 2003 Feb 21;90(7):074302 - PubMed
  22. Nano Lett. 2008 Mar;8(3):902-7 - PubMed
  23. Nat Mater. 2003 Nov;2(11):731-4 - PubMed
  24. Phys Rev Lett. 2009 Mar 20;102(11):118102 - PubMed
  25. Nat Mater. 2007 Mar;6(3):183-91 - PubMed
  26. Phys Chem Chem Phys. 2011 Feb 14;13(6):2021-6 - PubMed
  27. J Am Chem Soc. 2010 Jun 16;132(23):8180-6 - PubMed

Publication Types