Display options
Share it on

Hortic Res. 2016 Mar 16;3:16007. doi: 10.1038/hortres.2016.7. eCollection 2016.

The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid.

Horticulture research

Qing-Yu Zhang, Li-Qing Zhang, Li-Li Song, Ke Duan, Na Li, Yan-Xiu Wang, Qing-Hua Gao

Affiliations

  1. Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shanxi 712100, China.
  2. Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS) , Shanghai 201403, China.
  3. Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; College of Agricultural Sciences, Gansu Agricultural University, Lanzhou 730000, China.
  4. School of Life Science, Taizhou University , Taizhou 318000, China.
  5. College of Agricultural Sciences, Gansu Agricultural University , Lanzhou 730000, China.

PMID: 27004126 PMCID: PMC4793257 DOI: 10.1038/hortres.2016.7

Abstract

The disease symptoms recognized as 'Anthracnose' are caused by Colletotrichum spp. and lead to large-scale strawberry (Fragaria×ananassa Duchesne) losses worldwide in terms of both quality and production. Little is known regarding the mechanisms underlying the genetic variations in the strawberry-Colletotrichum spp. interaction. In this work, Colletotrichum gloeosporioides (C. gloeosporioides) infection was characterized in two varieties exhibiting different susceptibilities, and the involvement of salicylic acid (SA) was examined. Light microscopic observation showed that C. gloeosporioides conidia germinated earlier and faster on the leaf surface of the susceptible cultivar compared with the less-susceptible cultivar. Several PR genes were differentially expressed, with higher-amplitude changes observed in the less-susceptible cultivar. The less-susceptible cultivar contained a higher level of basal SA, and the SA levels increased rapidly upon infection, followed by a sharp decrease before the necrotrophic phase. External SA pretreatment reduced susceptibility and elevated the internal SA levels in both varieties, which were sharply reduced in the susceptible cultivar upon inoculation. The less-susceptible cultivar also displayed a more sensitive and marked increase in the transcripts of NB-LRR genes to C. gloeosporioides, and SA pretreatment differentially induced transcript accumulation in the two varieties during infection. Furthermore, SA directly inhibited the germination of C. gloeosporioides conidia; NB-LRR transcript accumulation in response to SA pretreatment was both dose- and cultivar-dependent. The results demonstrate that the less-susceptible cultivar showed reduced conidia germination. The contribution of SA might involve microbial isolate-specific sensitivity to SA, cultivar/tissue-specific SA homeostasis and signaling, and the sensitivity of R genes and the related defense network to SA and pathogens.

References

  1. Genetics. 2004 Dec;168(4):2197-206 - PubMed
  2. Plant J. 2008 Mar;53(5):763-75 - PubMed
  3. Curr Opin Plant Biol. 2007 Oct;10(5):466-72 - PubMed
  4. Nature. 2012 May 16;486(7402):228-32 - PubMed
  5. Annu Rev Phytopathol. 2004;42:185-209 - PubMed
  6. Genome. 1999 Apr;42(2):254-64 - PubMed
  7. Cell Rep. 2012 Jun 28;1(6):639-47 - PubMed
  8. Front Plant Sci. 2013 Feb 22;4:30 - PubMed
  9. J Exp Bot. 2009;60(11):3043-65 - PubMed
  10. Planta. 2002 Nov;216(1):44-56 - PubMed
  11. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16463-8 - PubMed
  12. J Biotechnol. 2012 Jun 30;159(4):251-64 - PubMed
  13. Curr Opin Plant Biol. 2010 Aug;13(4):472-7 - PubMed
  14. Plant Cell. 2012 Dec;24(12 ):5123-41 - PubMed
  15. PLoS One. 2013 Aug 05;8(8):e70603 - PubMed
  16. Gene. 2013 Sep 15;527(1):215-27 - PubMed
  17. Nature. 2006 Nov 16;444(7117):323-9 - PubMed
  18. Int J Food Microbiol. 2010 Jun 30;141(1-2):122-5 - PubMed
  19. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9927-32 - PubMed
  20. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12164-9 - PubMed
  21. Annu Rev Phytopathol. 2005;43:205-27 - PubMed
  22. J Zhejiang Univ Sci B. 2010 Jan;11(1):61-70 - PubMed
  23. J Proteomics. 2012 Jul 16;75(13):4074-90 - PubMed
  24. Nat Rev Genet. 2010 Aug;11(8):539-48 - PubMed
  25. Nat Immunol. 2006 Dec;7(12):1243-9 - PubMed
  26. Plant Cell Physiol. 2011 Nov;52(11):1873-903 - PubMed
  27. J Plant Physiol. 2008 Jan;165(1):41-51 - PubMed
  28. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4649-54 - PubMed
  29. FEMS Microbiol Lett. 2001 May 30;199(2):153-60 - PubMed
  30. Plant Cell. 2003 Feb;15(2):317-30 - PubMed
  31. Arch Microbiol. 2011 Apr;193(4):275-86 - PubMed
  32. PLoS Genet. 2009 Dec;5(12):e1000772 - PubMed
  33. Plant Physiol Biochem. 2012 May;54:10-6 - PubMed
  34. J Bacteriol. 1998 Oct;180(19):5144-50 - PubMed
  35. Trends Plant Sci. 2004 Feb;9(2):97-104 - PubMed
  36. Plant Physiol. 2008 Jul;147(3):1358-68 - PubMed
  37. Mol Plant Microbe Interact. 2012 Nov;25(11):1430-9 - PubMed
  38. Annu Rev Genet. 2003;37:579-609 - PubMed
  39. Mol Plant Microbe Interact. 2001 Oct;14(10):1131-9 - PubMed
  40. J Agric Food Chem. 2014 Mar 26;:null - PubMed
  41. Phytopathology. 1997 May;87(5):516-21 - PubMed
  42. J Integr Plant Biol. 2011 Jun;53(6):412-28 - PubMed

Publication Types