Display options
Share it on

Nature. 2016 Mar 17;531(7594):317-22. doi: 10.1038/nature17148.

Interface dynamics and crystal phase switching in GaAs nanowires.

Nature

Daniel Jacobsson, Federico Panciera, Jerry Tersoff, Mark C Reuter, Sebastian Lehmann, Stephan Hofmann, Kimberly A Dick, Frances M Ross

Affiliations

  1. Solid State Physics and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden.
  2. Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden.
  3. Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
  4. IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA.

PMID: 26983538 PMCID: PMC4876924 DOI: 10.1038/nature17148

Abstract

Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

References

  1. Adv Mater. 2015 Oct 28;27(40):6096-103 - PubMed
  2. Phys Rev Lett. 2007 Oct 5;99(14):146101 - PubMed
  3. Nano Lett. 2010 Mar 10;10(3):908-15 - PubMed
  4. Science. 2010 Oct 22;330(6003):489-93 - PubMed
  5. Nano Lett. 2013 Mar 13;13(3):903-8 - PubMed
  6. Nanotechnology. 2013 Jan 11;24(1):015601 - PubMed
  7. Nano Lett. 2011 Mar 9;11(3):1259-64 - PubMed
  8. Nat Nanotechnol. 2009 Jan;4(1):50-5 - PubMed
  9. Nano Lett. 2014 Oct 8;14(10):5865-72 - PubMed
  10. Nano Lett. 2010 Feb 10;10(2):514-9 - PubMed
  11. Nano Lett. 2010 Sep 8;10(9):3494-9 - PubMed
  12. Nanotechnology. 2014 May 23;25(20):205601 - PubMed
  13. Nano Lett. 2015 Apr 8;15(4):2652-6 - PubMed
  14. Nano Lett. 2011 Oct 12;11(10):4314-8 - PubMed
  15. Phys Rev Lett. 2011 Mar 25;106(12):125505 - PubMed
  16. Phys Rev Lett. 2011 Jul 8;107(2):025503 - PubMed
  17. Nano Lett. 2010 Dec 8;10(12):4807-12 - PubMed
  18. Nano Lett. 2010 Apr 14;10(4):1198-201 - PubMed
  19. Nano Lett. 2012 Oct 10;12(10):5436-42 - PubMed
  20. Nanotechnology. 2012 Mar 9;23(9):095702 - PubMed
  21. Nano Lett. 2013 Sep 11;13(9):4099-105 - PubMed
  22. Nanotechnology. 2015 Jul 31;26(30):301001 - PubMed
  23. Nano Lett. 2011 Feb 9;11(2):316-20 - PubMed
  24. Nano Lett. 2010 Nov 10;10 (11):4475-82 - PubMed
  25. Science. 2014 Jan 17;343(6168):281-4 - PubMed
  26. Nano Lett. 2013 Apr 10;13(4):1559-63 - PubMed

Publication Types

Grant support