Display options
Share it on

Nat Mater. 2016 Jul;15(7):711-6. doi: 10.1038/nmat4603. Epub 2016 Mar 28.

Strong interfacial exchange field in the graphene/EuS heterostructure.

Nature materials

Peng Wei, Sunwoo Lee, Florian Lemaitre, Lucas Pinel, Davide Cutaia, Wujoon Cha, Ferhat Katmis, Yu Zhu, Donald Heiman, James Hone, Jagadeesh S Moodera, Ching-Tzu Chen

Affiliations

  1. Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  2. Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  3. IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA.
  4. Electrical Engineering Department, Columbia University, New York, New York 10027, USA.
  5. Institut polytechnique de Grenoble, F38031 Grenoble Cedex 1, France.
  6. IBM Zurich Research Laboratory, Säumerstrasse 4, CH- 8803 Rüschlikon, Switzerland.
  7. Mechanical Engineering Department, Columbia University, New York, New York 10027, USA.
  8. Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA.

PMID: 27019382 DOI: 10.1038/nmat4603

Abstract

Exploiting 2D materials for spintronic applications can potentially realize next-generation devices featuring low power consumption and quantum operation capability. The magnetic exchange field (MEF) induced by an adjacent magnetic insulator enables efficient control of local spin generation and spin modulation in 2D devices without compromising the delicate material structures. Using graphene as a prototypical 2D system, we demonstrate that its coupling to the model magnetic insulator (EuS) produces a substantial MEF (>14 T) with the potential to reach hundreds of tesla, which leads to orders-of-magnitude enhancement of the spin signal originating from the Zeeman spin Hall effect. Furthermore, the new ferromagnetic ground state of Dirac electrons resulting from the strong MEF may give rise to quantized spin-polarized edge transport. The MEF effect shown in our graphene/EuS devices therefore provides a key functionality for future spin logic and memory devices based on emerging 2D materials in classical and quantum information processing.

References

  1. Phys Rev Lett. 2006 Apr 7;96(13):136806 - PubMed
  2. Nano Lett. 2015 May 13;15(5):3236-40 - PubMed
  3. Nature. 2007 Aug 2;448(7153):571-4 - PubMed
  4. Nat Nanotechnol. 2014 Oct;9(10):794-807 - PubMed
  5. Phys Rev Lett. 2006 Jun 30;96(25):256602 - PubMed
  6. Nat Mater. 2015 Sep;14(9):871-82 - PubMed
  7. Phys Rev Lett. 2014 Mar 21;112(11):116601 - PubMed
  8. Science. 2009 Jul 17;325(5938):294-7 - PubMed
  9. ACS Nano. 2012 Nov 27;6(11):10063-9 - PubMed
  10. Phys Rev Lett. 2010 Oct 15;105(16):167202 - PubMed
  11. Phys Rev Lett. 2013 May 3;110(18):186807 - PubMed
  12. Phys Rev Lett. 2008 May 23;100(20):206801 - PubMed
  13. Nature. 2014 Jan 23;505(7484):528-32 - PubMed
  14. Phys Rev Lett. 2013 Jan 25;110(4):046603 - PubMed
  15. Phys Rev Lett. 2011 Aug 26;107(9):096601 - PubMed
  16. Phys Rev Lett. 2013 May 24;110(21):216601 - PubMed
  17. Phys Rev Lett. 2012 Nov 2;109(18):186604 - PubMed
  18. Phys Rev Lett. 2013 Mar 1;110(9):097001 - PubMed
  19. Phys Rev Lett. 2015 Jan 9;114(1):016603 - PubMed
  20. Science. 2011 Apr 15;332(6027):328-30 - PubMed

Publication Types