Display options
Share it on

JCI Insight. 2016 Mar 17;1(3). doi: 10.1172/jci.insight.75351.

Decidual Cox2 inhibition improves fetal and maternal outcomes in a preeclampsia-like mouse model.

JCI insight

Jenny L Sones, Jeeyeon Cha, Ashley K Woods, Amanda Bartos, Christa Y Heyward, Heinrich E Lob, Catherine E Isroff, Scott D Butler, Stephanie E Shapiro, Sudhansu K Dey, Robin L Davisson

Affiliations

  1. Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
  2. Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA.
  3. Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA.
  4. Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA.

PMID: 27159542 PMCID: PMC4855694 DOI: 10.1172/jci.insight.75351

Abstract

Preeclampsia (PE) is a disorder of pregnancy that manifests as late gestational maternal hypertension and proteinuria and can be life-threatening to both the mother and baby. It is believed that abnormal placentation is responsible for the cascade of events leading to the maternal syndrome. Embryo implantation is critical to establishing a healthy pregnancy. Defective implantation can cause adverse "ripple effects," leading to abnormal decidualization and placentation, retarded fetal development, and poor pregnancy outcomes, such as PE and fetal growth restriction. The precise mechanism(s) of implantation defects that lead to PE remain elusive. BPH/5 mice, which spontaneously develop the cardinal features of PE, show peri-implantation defects including upregulation of Cox2 and IL-15 at the maternal-fetal interface. This was associated with decreased decidual natural killer (dNK) cells, which have important roles in establishing placental perfusion. Interestingly, a single administration of a Cox2 inhibitor (celecoxib) during decidualization restrained Cox2 and IL-15 expression, restored dNK cell numbers, improved fetal growth, and attenuated late gestational hypertension in BPH/5 female mice. This study provides evidence that decidual overexpression of Cox2 and IL-15 may trigger the adverse pregnancy outcomes reflected in the preeclamptic syndrome, underscoring the idea that Cox2 inhibitor treatment is an effective strategy for the prevention of PE-associated fetal and maternal morbidity and mortality.

References

  1. Nat Med. 2011 Oct 16;17(11):1509-13 - PubMed
  2. Semin Reprod Med. 2010 Jan;28(1):17-26 - PubMed
  3. J Immunol. 2004 Aug 1;173(3):2011-22 - PubMed
  4. J Immunol. 2003 Jul 1;171(1):37-46 - PubMed
  5. Hypertension. 2011 Jan;57(1):94-102 - PubMed
  6. Expert Rev Mol Diagn. 2009 Jan;9(1):37-49 - PubMed
  7. J Reprod Immunol. 2007 Apr;73(2):166-71 - PubMed
  8. Proc Natl Acad Sci U S A. 2001 Jan 30;98 (3):1047-52 - PubMed
  9. Best Pract Res Clin Obstet Gynaecol. 2011 Jun;25(3):367-87 - PubMed
  10. Hum Reprod. 2001 Jun;16(6):1237-43 - PubMed
  11. Am J Reprod Immunol. 2004 Apr;51(4):257-68 - PubMed
  12. Hypertension. 2002 Feb;39(2 Pt 2):337-42 - PubMed
  13. J Rheumatol. 2004 May;31(5):875-83 - PubMed
  14. J Clin Invest. 2010 Mar;120(3):803-15 - PubMed
  15. BMC Dev Biol. 2006 Feb 27;6:10 - PubMed
  16. Nat Med. 2006 Sep;12(9):1065-74 - PubMed
  17. J Reprod Immunol. 2002 Oct-Nov;57(1-2):151-68 - PubMed
  18. Biol Reprod. 2012 Oct 04;87(4):81 - PubMed
  19. J Clin Invest. 2003 Mar;111(5):649-58 - PubMed
  20. Mol Endocrinol. 2000 Aug;14(8):1147-61 - PubMed
  21. Biol Reprod. 2007 Apr;76(4):579-88 - PubMed
  22. Pharmacol Rev. 2012 Jul;64(3):540-82 - PubMed
  23. Biol Reprod. 2009 May;80(5):848-59 - PubMed
  24. J Clin Invest. 2006 Oct;116(10):2653-62 - PubMed
  25. Gynecol Obstet Invest. 2000;50(2):103-7 - PubMed
  26. Am J Reprod Immunol. 2006 Nov-Dec;56(5-6):292-301 - PubMed
  27. Prostaglandins. 1980 Jul;20(1):105-10 - PubMed
  28. Genes Dev. 1999 Jun 15;13(12):1561-74 - PubMed
  29. Reproduction. 2014 Aug;148(2):R29-40 - PubMed
  30. Am J Reprod Immunol. 2010 Jun;63(6):472-81 - PubMed
  31. J Biol Chem. 2002 Aug 9;277(32):29260-7 - PubMed
  32. Endocr Rev. 2004 Jun;25(3):341-73 - PubMed
  33. J Immunol. 2008 Nov 1;181(9):6140-7 - PubMed
  34. Annu Rev Immunol. 2013;31:387-411 - PubMed
  35. FASEB J. 2011 Apr;25(4):1176-87 - PubMed
  36. Reproduction. 2006 Feb;131(2):341-9 - PubMed
  37. Prenat Diagn. 2014 Jul;34(7):642-8 - PubMed
  38. Hypertension. 2008 Apr;51(4):1058-65 - PubMed
  39. Cell. 1997 Oct 17;91(2):197-208 - PubMed
  40. Am J Reprod Immunol. 2010 Dec;64(6):402-10 - PubMed
  41. Reproduction. 2009 Jul;138(1):177-84 - PubMed
  42. Placenta. 2008 Jun;29(6):523-30 - PubMed
  43. J Clin Invest. 2013 Sep;123(9):4063-75 - PubMed
  44. Biol Reprod. 1972 Aug;7(1):82-6 - PubMed
  45. Contraception. 2002 May;65(5):373-8 - PubMed
  46. Biol Reprod. 2006 Dec;75(6):899-907 - PubMed
  47. N Engl J Med. 1999 Jun 10;340(23):1796-9 - PubMed
  48. Dev Cell. 2011 Dec 13;21(6):1014-25 - PubMed
  49. Nature. 1992 Sep 3;359(6390):76-9 - PubMed
  50. Nat Med. 2012 Dec;18(12):1754-67 - PubMed
  51. Development. 2002 Jun;129(12 ):2879-89 - PubMed
  52. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21647-52 - PubMed
  53. Placenta. 2005 May;26(5):410-8 - PubMed
  54. Vitam Horm. 1973;31:201-56 - PubMed
  55. Clin Genet. 2003 Aug;64(2):96-103 - PubMed
  56. Mol Cell Biol. 2007 Aug;27(15):5468-78 - PubMed
  57. Lab Anim Sci. 1997 Jun;47(3):288-92 - PubMed
  58. J Matern Fetal Neonatal Med. 2012 May;25(5):498-507 - PubMed
  59. Nat Rev Genet. 2006 Mar;7(3):185-99 - PubMed
  60. Nature. 2005 May 5;435(7038):104-8 - PubMed
  61. J Clin Invest. 2012 Nov;122(11):3960-4 - PubMed

Publication Types

Grant support