Display options
Share it on

ACS Cent Sci. 2015 Nov 25;1(8):431-8. doi: 10.1021/acscentsci.5b00259. Epub 2015 Nov 04.

Bright Fluorescent Nanotags from Bottlebrush Polymers with DNA-Tipped Bristles.

ACS central science

Munira F Fouz, Kosuke Mukumoto, Saadyah Averick, Olivia Molinar, Brooke M McCartney, Krzysztof Matyjaszewski, Bruce A Armitage, Subha R Das

Affiliations

  1. Department of Chemistry, Center for Nucleic Acids Science and Technology, Center for Macromolecular Engineering, and Department of Biological Sciences, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.

PMID: 27163005 PMCID: PMC4827471 DOI: 10.1021/acscentsci.5b00259

Abstract

Bright signal outputs are needed for fluorescence detection of biomolecules at their native expression levels. Increasing the number of labels on a probe often results in crowding-induced self-quenching of chromophores, and maintaining the function of the targeting moiety (e.g., an antibody) is a concern. Here we demonstrate a simple method to accommodate thousands of fluorescent dye molecules on a single antibody probe while avoiding the negative effects of self-quenching. We use a bottlebrush polymer from which extend hundreds of duplex DNA strands that can accommodate hundreds of covalently attached and/or thousands of noncovalently intercalated fluorescent dyes. This polymer-DNA assembly sequesters the intercalated fluorophores against dissociation and can be tethered through DNA hybridization to an IgG antibody. The resulting fluorescent nanotag can detect protein targets in flow cytometry, confocal fluorescence microscopy, and dot blots with an exceptionally bright signal that compares favorably to commercially available antibodies labeled with organic dyes or quantum dots.

References

  1. Nat Chem. 2014 Sep;6(9):804-9 - PubMed
  2. J Immunol Methods. 1999 Nov 19;230(1-2):113-20 - PubMed
  3. J Am Chem Soc. 2014 May 7;136(18):6513-33 - PubMed
  4. J Surg Res. 2014 May 1;188(1):119-28 - PubMed
  5. Angew Chem Int Ed Engl. 2010 Nov 8;49(46):8574-87 - PubMed
  6. Bioconjug Chem. 2011 Aug 17;22(8):1491-502 - PubMed
  7. Nat Methods. 2005 Dec;2(12):910-9 - PubMed
  8. J Histochem Cytochem. 1999 Mar;47(3):281-8 - PubMed
  9. Chem Rev. 2001 Sep;101(9):2921-90 - PubMed
  10. ACS Nano. 2009 Feb 24;3(2):425-33 - PubMed
  11. Cytometry A. 2010 Nov;77(11):1020-31 - PubMed
  12. Mol Cell Probes. 2008 Oct-Dec;22(5-6):294-300 - PubMed
  13. Bioconjug Chem. 1996 Jul-Aug;7(4):482-9 - PubMed
  14. Biotechnol Bioeng. 2008 Jun 1;100(2):317-24 - PubMed
  15. J Immunol Methods. 2004 Jan;284(1-2):27-38 - PubMed
  16. Bioorg Med Chem Lett. 2012 Aug 15;22(16):5313-6 - PubMed
  17. Anal Chem. 2009 Aug 15;81(16):6813-22 - PubMed
  18. J Histochem Cytochem. 1999 Apr;47(4):421-30 - PubMed
  19. Nature. 1992 Oct 29;359(6398):859-61 - PubMed
  20. Chem Rev. 2014 Nov 12;114(21):10976-1026 - PubMed
  21. J Histochem Cytochem. 2011 Apr;59(4):382-90 - PubMed
  22. J Am Chem Soc. 2014 Oct 8;136(40):14255-62 - PubMed
  23. Biophys J. 2011 Sep 7;101(5):1148-54 - PubMed
  24. Chem Soc Rev. 2013 Apr 21;42(8):3394-426 - PubMed
  25. J Am Chem Soc. 2007 Feb 21;129(7):2025-34 - PubMed
  26. ACS Chem Biol. 2009 Jul 17;4(7):535-46 - PubMed
  27. Science. 2011 May 6;332(6030):687-96 - PubMed
  28. J Am Chem Soc. 2011 Jan 26;133(3):559-66 - PubMed
  29. J Immunol Methods. 2002 May 1;263(1-2):23-33 - PubMed
  30. J Am Chem Soc. 2014 Apr 2;136(13):4945-53 - PubMed
  31. Nat Methods. 2014 Apr;11(4):417-22 - PubMed
  32. J Am Chem Soc. 2013 Aug 28;135(34):12508-11 - PubMed
  33. Bioorg Med Chem Lett. 2002 Aug 19;12(16):2085-8 - PubMed
  34. Bioconjug Chem. 1999 Nov-Dec;10 (6):1090-106 - PubMed
  35. BMC Syst Biol. 2008 Aug 12;2:74 - PubMed
  36. J Control Release. 2015 May 10;205:45-57 - PubMed
  37. Nat Protoc. 2013 Nov;8(11):2079-89 - PubMed
  38. Langmuir. 2012 Jan 31;28(4):1954-8 - PubMed
  39. Chem Rev. 2009 Nov;109(11):5437-527 - PubMed
  40. Anal Biochem. 2015 Jan 15;469:1-3 - PubMed
  41. BMC Biotechnol. 2010 Feb 18;10:16 - PubMed

Publication Types

Grant support