Display options
Share it on

Cell Syst. 2015 Sep 23;1(3):197-209. doi: 10.1016/j.cels.2015.08.014. Epub 2015 Sep 23.

Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

Cell systems

Martin L Miller, Ed Reznik, Nicholas P Gauthier, Bülent Arman Aksoy, Anil Korkut, Jianjiong Gao, Giovanni Ciriello, Nikolaus Schultz, Chris Sander

Affiliations

  1. Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK. Electronic address: [email protected].
  2. Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
  3. Computational Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Electronic address: [email protected].

PMID: 27135912 PMCID: PMC4982675 DOI: 10.1016/j.cels.2015.08.014

Abstract

In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype.

Copyright © 2015 Elsevier Inc. All rights reserved.

References

  1. Dev Biol. 2002 Oct 1;250(1):1-23 - PubMed
  2. Cell. 2013 Mar 28;153(1):17-37 - PubMed
  3. Nature. 2011 Mar 10;471(7337):189-95 - PubMed
  4. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 - PubMed
  5. Nucleic Acids Res. 2012 Nov;40(21):e169 - PubMed
  6. Nature. 1997 Jul 3;388(6637):87-93 - PubMed
  7. PLoS Med. 2006 Dec;3(12):e485 - PubMed
  8. Mol Syst Biol. 2013;9:637 - PubMed
  9. Int J Oncol. 2001 Feb;18(2):265-70 - PubMed
  10. Science. 2004 Oct 8;306(5694):269-71 - PubMed
  11. Nat Genet. 2012 Oct;44(10 ):1104-10 - PubMed
  12. Bioinformatics. 2010 Oct 1;26(19):2458-9 - PubMed
  13. Cancer Res. 2013 Jan 15;73(2):725-35 - PubMed
  14. J Clin Invest. 2010 Dec 1;120(12 ):4569-82 - PubMed
  15. Cancer Cell. 2013 May 13;23 (5):603-17 - PubMed
  16. Structure. 2006 Jan;14(1):159-66 - PubMed
  17. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17761-6 - PubMed
  18. Nature. 2012 Jul 18;487(7407):330-7 - PubMed
  19. Nature. 2014 Jan 23;505(7484):495-501 - PubMed
  20. Nature. 2007 Mar 8;446(7132):153-8 - PubMed
  21. Bioinformatics. 2008 Oct 15;24(20):2397-8 - PubMed
  22. Science. 1996 Aug 2;273(5275):595-603 - PubMed
  23. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  24. PLoS Comput Biol. 2015 Mar 20;11(3):e1004147 - PubMed
  25. PLoS One. 2010 Feb 12;5(2):e8918 - PubMed
  26. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3879-84 - PubMed
  27. Nature. 2013 Jul 11;499(7457):214-8 - PubMed
  28. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14476-81 - PubMed
  29. Sci Signal. 2013 Apr 02;6(269):pl1 - PubMed
  30. Nucleic Acids Res. 2011 Sep 1;39(17):e118 - PubMed
  31. Nat Methods. 2010 Apr;7(4):248-9 - PubMed
  32. Nat Med. 2015 Jan;21(1):81-5 - PubMed
  33. Cell Mol Life Sci. 1999 Mar;55(3):423-36 - PubMed
  34. Nat Rev Cancer. 2004 Sep;4(9):718-27 - PubMed
  35. Mol Cell. 2001 Dec;8(6):1277-89 - PubMed
  36. Sci Rep. 2013 Oct 02;3:2651 - PubMed
  37. Clin Cancer Res. 2011 Jun 1;17(11):3812-21 - PubMed
  38. Nature. 2008 Oct 23;455(7216):1069-75 - PubMed
  39. J Am Med Inform Assoc. 2012 Mar-Apr;19(2):275-83 - PubMed
  40. Protein Sci. 2011 May;20(5):908-24 - PubMed
  41. Nature. 2013 Aug 22;500(7463):415-21 - PubMed
  42. Nat Methods. 2013 Nov;10(11):1108-15 - PubMed
  43. J Biol Chem. 2006 Jun 23;281(25):17400-9 - PubMed
  44. Nat Biotechnol. 2012 Nov;30(11):1072-80 - PubMed
  45. Genome Res. 2012 Feb;22(2):398-406 - PubMed
  46. Cancer Discov. 2012 May;2(5):401-4 - PubMed
  47. Science. 2003 Jun 13;300(5626):1701-3 - PubMed
  48. Genome Res. 2012 Aug;22(8):1589-98 - PubMed
  49. BMC Bioinformatics. 2006 Mar 22;7:166 - PubMed
  50. Nucleic Acids Res. 2003 Jul 1;31(13):3812-4 - PubMed
  51. Cell. 2006 Jul 28;126(2):375-87 - PubMed
  52. Nucleic Acids Res. 2015 Jan;43(2):e10 - PubMed
  53. Nature. 2008 Feb 14;451(7180):846-50 - PubMed
  54. Hum Mutat. 2010 Mar;31(3):264-71 - PubMed
  55. Genome Res. 2009 Sep;19(9):1570-8 - PubMed
  56. PLoS One. 2011;6(12):e28766 - PubMed
  57. Nature. 2011 Jul 27;476(7360):298-303 - PubMed
  58. BMC Genomics. 2012 Jun 18;13 Suppl 4:S9 - PubMed

Publication Types

Grant support