Display options
Share it on

Front Plant Sci. 2016 Apr 25;7:517. doi: 10.3389/fpls.2016.00517. eCollection 2016.

Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles.

Frontiers in plant science

Oswaldo Valdés-López, Josef Batek, Nicolas Gomez-Hernandez, Cuong T Nguyen, Mariel C Isidra-Arellano, Ning Zhang, Trupti Joshi, Dong Xu, Kim K Hixson, Karl K Weitz, Joshua T Aldrich, Ljiljana Paša-Tolić, Gary Stacey

Affiliations

  1. Division of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA; Laboratorio de Genómica Funcional de Leguminosas, FES Iztacala Universidad Nacional Autónoma de MéxicoMéxico, Mexico.
  2. Division of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA.
  3. Laboratorio de Genómica Funcional de Leguminosas, FES Iztacala Universidad Nacional Autónoma de México México, Mexico.
  4. C.S. Bond Life Sciences Center, Informatics Institute, University of Missouri Columbia, MO, USA.
  5. C.S. Bond Life Sciences Center, Informatics Institute, University of MissouriColumbia, MO, USA; Department of Computer Science, University of MissouriColumbia, MO, USA; Department of Molecular Microbiology and Immunology and Office of Research, School of Medicine, University of MissouriColumbia, MO, USA.
  6. C.S. Bond Life Sciences Center, Informatics Institute, University of MissouriColumbia, MO, USA; Department of Computer Science, University of MissouriColumbia, MO, USA.
  7. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA.

PMID: 27200004 PMCID: PMC4843095 DOI: 10.3389/fpls.2016.00517

Abstract

Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

Keywords: gene module; heat stress; proteomics; root hairs; soybean; transcriptomics

References

  1. Genome Res. 2010 Feb;20(2):180-9 - PubMed
  2. Mol Cell Proteomics. 2010 Dec;9(12):2840-52 - PubMed
  3. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 - PubMed
  4. Plant J. 2004 Mar;37(6):914-39 - PubMed
  5. BMC Plant Biol. 2014 Apr 28;14:110 - PubMed
  6. J Proteome Res. 2014 Feb 7;13(2):890-7 - PubMed
  7. Int J Mol Sci. 2013 May 03;14(5):9643-84 - PubMed
  8. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19686-90 - PubMed
  9. J Proteome Res. 2008 Aug;7(8):3354-63 - PubMed
  10. Front Plant Sci. 2015 May 19;6:363 - PubMed
  11. Neurosci Lett. 2003 Mar 13;339(1):62-6 - PubMed
  12. BMC Genomics. 2012;13 Suppl 1:S15 - PubMed
  13. BMC Genomics. 2012 Aug 31;13:437 - PubMed
  14. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6811-8 - PubMed
  15. Bioinformatics. 2009 May 1;25(9):1105-11 - PubMed
  16. Plant Cell Environ. 2009 Sep;32(9):1211-29 - PubMed
  17. Anal Chem. 2006 Nov 15;78(22):7796-801 - PubMed
  18. Plant Biotechnol J. 2011 Apr;9(3):315-27 - PubMed
  19. Biochem Biophys Res Commun. 2013 Mar 8;432(2):203-7 - PubMed
  20. Curr Opin Plant Biol. 2015 Apr;24:39-46 - PubMed
  21. Plant Physiol. 2005 Jun;138(2):882-97 - PubMed
  22. Science. 2013 Aug 2;341(6145):508-13 - PubMed
  23. Nature. 2007 May 24;447(7143):407-12 - PubMed
  24. Plant Mol Biol. 2014 Jan;84(1-2):125-43 - PubMed
  25. Nucleic Acids Res. 2014 Jan;42(Database issue):D1245-52 - PubMed
  26. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 - PubMed
  27. Trends Plant Sci. 2010 May;15(5):247-58 - PubMed
  28. Cell. 2010 Jan 8;140(1):136-47 - PubMed
  29. Gene. 2012 Aug 10;504(2):160-5 - PubMed
  30. Nature. 2010 Jan 14;463(7278):178-83 - PubMed
  31. Plant Physiol. 2010 Feb;152(2):541-52 - PubMed
  32. Front Plant Sci. 2013 Dec 26;4:532 - PubMed
  33. Plant Cell Physiol. 2010 Mar;51(3):448-62 - PubMed
  34. BMC Plant Biol. 2013 Oct 06;13:153 - PubMed
  35. Plant Cell Physiol. 2012 May;53(5):801-8 - PubMed
  36. Proteomics. 2011 May;11(10 ):2019-26 - PubMed
  37. Cell Rep. 2014 Sep 25;8(6):2015-30 - PubMed
  38. Plant J. 2013 Jun;74(5):840-51 - PubMed
  39. Plant J. 2009 Jun;58(6):1068-82 - PubMed
  40. J Exp Bot. 2011 Oct;62(14):4731-48 - PubMed
  41. Plant J. 2014 May;78(3):424-40 - PubMed
  42. Nat Protoc. 2012 Mar 01;7(3):562-78 - PubMed
  43. Biochem J. 1971 Dec;125(4):1075-80 - PubMed
  44. BMC Genomics. 2014 Jun 10;15:456 - PubMed
  45. BMC Bioinformatics. 2013 Sep 22;14:278 - PubMed
  46. Plant Signal Behav. 2009 Jul;4(7):577-9 - PubMed
  47. Plant Physiol. 2009 Feb;149(2):670-82 - PubMed
  48. Plant Mol Biol. 2011 Sep;77(1-2):47-58 - PubMed
  49. PLoS One. 2013;8(2):e57625 - PubMed

Publication Types