Display options
Share it on

Front Microbiol. 2016 May 18;7:708. doi: 10.3389/fmicb.2016.00708. eCollection 2016.

De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root.

Frontiers in microbiology

Chen Zhu, Lin Ai, Li Wang, Pingping Yin, Chenglan Liu, Shanshan Li, Huiming Zeng

Affiliations

  1. Biochemistry and Molecular Biology Department, College of Biological Sciences and Technology, Beijing Forestry University Beijing, China.
  2. Ecology Department, College of Forestry, Beijing Forestry University Beijing, China.
  3. Silviculture Forestry Department, College of Forestry, Beijing Forestry University Beijing, China.
  4. Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China.

PMID: 27242730 PMCID: PMC4870862 DOI: 10.3389/fmicb.2016.00708

Abstract

Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.

Keywords: RNA sequencing; Rhizoctonia solani AG1 IA strain; Zoysia japonica steud; brown spot; transcriptome analysis

References

  1. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14921-5 - PubMed
  2. Phytopathology. 2010 Feb;100(2):172-82 - PubMed
  3. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8792-6 - PubMed
  4. Eukaryot Cell. 2013 Dec;12(12):1619-28 - PubMed
  5. Mol Plant Pathol. 2013 Dec;14(9):910-22 - PubMed
  6. Protoplasma. 2012 Oct;249(4):919-42 - PubMed
  7. PLoS Genet. 2014 May 08;10(5):e1004281 - PubMed
  8. Mol Plant Pathol. 2015 Feb;16(2):164-76 - PubMed
  9. PLoS Pathog. 2012;8(5):e1002724 - PubMed
  10. Cold Spring Harb Protoc. 2010 Jul 01;2010(7):pdb.prot4959 - PubMed
  11. Plant Pathol. 2012 Feb 1;61(1):152-160 - PubMed
  12. Plant Physiol. 2008 Sep;148(1):97-107 - PubMed
  13. PLoS Pathog. 2013;9(6):e1003445 - PubMed
  14. Nat Methods. 2008 Jul;5(7):621-8 - PubMed
  15. Eukaryot Cell. 2011 Feb;10(2):156-67 - PubMed
  16. Mol Microbiol. 2013 Mar;87(5):1013-28 - PubMed
  17. Int J Mol Sci. 2015 Aug 14;16(8):19248-90 - PubMed
  18. Mol Plant Pathol. 2014 Dec;15(9):940-7 - PubMed
  19. FEMS Microbiol Lett. 2008 Jan;278(1):22-8 - PubMed
  20. Biochim Biophys Acta. 2011 Jan;1814(1):14-8 - PubMed
  21. Annu Rev Microbiol. 2012;66:39-63 - PubMed
  22. Free Radic Biol Med. 2009 Jun 15;46(12):1686-93 - PubMed
  23. Nat Biotechnol. 2011 May 15;29(7):644-52 - PubMed
  24. Mol Cell Biol. 2015 May;35(9):1606-18 - PubMed
  25. Front Plant Sci. 2011 Nov 29;2:88 - PubMed
  26. Int J Mol Sci. 2014 Feb 18;15(2):2738-60 - PubMed
  27. BMC Plant Biol. 2014 Nov 28;14 :321 - PubMed
  28. Mol Plant Microbe Interact. 2010 Mar;23(3):317-31 - PubMed
  29. PLoS One. 2013;8(2):e56814 - PubMed
  30. Nat Commun. 2013;4:1424 - PubMed
  31. Plant Cell. 2011 Jun;23(6):2440-55 - PubMed
  32. Plant Cell. 2010 Oct;22(10):3357-73 - PubMed
  33. J Mol Biol. 2014 Nov 11;426(22):3757-72 - PubMed
  34. Mol Plant Microbe Interact. 2010 Oct;23(10):1275-86 - PubMed
  35. PLoS Pathog. 2011 Apr;7(4):e1001335 - PubMed
  36. FEBS J. 2014 Oct;281(20):4754-64 - PubMed
  37. Mol Genet Genomics. 2007 Oct;278(4):421-31 - PubMed
  38. BMC Biotechnol. 2013 Jan 18;13:4 - PubMed
  39. Curr Genet. 2003 Sep;43(6):415-24 - PubMed
  40. J Exp Bot. 2012 Sep;63(15):5507-19 - PubMed
  41. Sci Rep. 2012;2:689 - PubMed
  42. PLoS Pathog. 2012;8(8):e1002888 - PubMed
  43. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  44. BMC Microbiol. 2015 Oct 09;15:206 - PubMed
  45. Microbiology. 2013 Nov;159(Pt 11):2395-404 - PubMed
  46. Eukaryot Cell. 2003 Dec;2(6):1187-99 - PubMed
  47. J Exp Bot. 2014 Sep;65(17):4907-18 - PubMed
  48. Biochim Biophys Acta. 2011 Jan;1814(1):29-35 - PubMed
  49. Mol Plant Microbe Interact. 2004 Jan;17(1):70-80 - PubMed
  50. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12089-94 - PubMed
  51. Mol Plant Microbe Interact. 2006 Jul;19(7):725-33 - PubMed
  52. Sci Rep. 2016 Feb 02;6:20169 - PubMed
  53. Bioinformatics. 2003 Feb 12;19(3):368-75 - PubMed
  54. Bioinformatics. 2003 Mar 22;19(5):651-2 - PubMed
  55. Cell Host Microbe. 2011 Mar 17;9(3):187-99 - PubMed

Publication Types