Display options
Share it on

Front Microbiol. 2016 May 23;7:718. doi: 10.3389/fmicb.2016.00718. eCollection 2016.

Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China.

Frontiers in microbiology

Kui Zhu, Christina S Hölzel, Yifang Cui, Ricarda Mayer, Yang Wang, Richard Dietrich, Andrea Didier, Rupert Bassitta, Erwin Märtlbauer, Shuangyang Ding

Affiliations

  1. Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural UniversityBeijing, China; Department of Veterinary Sciences, Ludwig Maximilian University of MunichOberschleißheim, Germany.
  2. Department of Veterinary Sciences, Ludwig Maximilian University of Munich Oberschleißheim, Germany.
  3. National Center for Veterinary Drug Safety Evaluation, China Agricultural University Beijing, China.

PMID: 27242738 PMCID: PMC4876114 DOI: 10.3389/fmicb.2016.00718

Abstract

Bacillus cereus is an important cause of foodborne infectious disease and food poisoning. However, B. cereus has also been used as a probiotic in human medicine and livestock production, with low standards of safety assessment. In this study, we evaluated the safety of 15 commercial probiotic B. cereus preparations from China in terms of mislabeling, toxin production, and transferable antimicrobial resistance. Most preparations were incorrectly labeled, as they contained additional bacterial species; one product did not contain viable B. cereus at all. In total, 18 B. cereus group strains-specifically B. cereus and Bacillus thuringiensis-were isolated. Enterotoxin genes nhe, hbl, and cytK1, as well as the ces-gene were assessed by PCR. Enterotoxin production and cytotoxicity were confirmed by ELISA and cell culture assays, respectively. All isolated B. cereus group strains produced the enterotoxin Nhe; 15 strains additionally produced Hbl. Antimicrobial resistance was assessed by microdilution; resistance genes were detected by PCR and further characterized by sequencing, transformation and conjugation assays. Nearly half of the strains harbored the antimicrobial resistance gene tet(45). In one strain, tet(45) was situated on a mobile genetic element-encoding a site-specific recombination mechanism-and was transferable to Staphylococcus aureus and Bacillus subtilis by electro-transformation. In view of the wide and uncontrolled use of these products, stricter regulations for safety assessment, including determination of virulence factors and transferable antimicrobial resistance genes, are urgently needed.

Keywords: Bacillus cereus; China; antimicrobial resistance; dif site; enterotoxin; probiotic; site-specific recombination; tetracycline resistance gene tet(45)

References

  1. Science. 2008 Jul 18;321(5887):365-7 - PubMed
  2. Chem Commun (Camb). 2013 Oct 18;49(81):9314-6 - PubMed
  3. Food Microbiol. 2011 Apr;28(2):284-90 - PubMed
  4. Appl Environ Microbiol. 2012 May;78(9):3203-13 - PubMed
  5. J Antimicrob Chemother. 2013 Sep;68(9):1962-9 - PubMed
  6. Astrobiology. 2011 May;11(4):323-34 - PubMed
  7. FEMS Microbiol Rev. 2008 Jul;32(4):579-606 - PubMed
  8. Microbiol Spectr. 2014 Dec;2(6):null - PubMed
  9. Appl Environ Microbiol. 2004 Mar;70(3):1555-62 - PubMed
  10. Front Microbiol. 2015 Jun 10;6:560 - PubMed
  11. Nat Rev Microbiol. 2010 Apr;8(4):251-9 - PubMed
  12. FEMS Immunol Med Microbiol. 2007 Oct;51(1):8-13 - PubMed
  13. Foodborne Pathog Dis. 2013 Feb;10(2):99-106 - PubMed
  14. PLoS One. 2013 Oct 18;8(10):e76955 - PubMed
  15. FEMS Microbiol Lett. 2011 Nov;324(2):135-41 - PubMed
  16. Mol Nutr Food Res. 2013 Aug;57(8):1479-504 - PubMed
  17. Symp Ser Soc Appl Microbiol. 1998;27:51S-61S - PubMed
  18. Clin Infect Dis. 2013 Aug;57(3):425-33 - PubMed
  19. Front Microbiol. 2015 Oct 07;6:1004 - PubMed
  20. FEMS Microbiol Lett. 2002 Sep 10;214(2):251-6 - PubMed
  21. FEMS Microbiol Lett. 1997 Dec 15;157(2):223-8 - PubMed
  22. Food Microbiol. 2015 Apr;46:195-9 - PubMed
  23. Lancet Infect Dis. 2013 Jul;13(7):571-2 - PubMed
  24. Science. 2012 Aug 31;337(6098):1107-11 - PubMed
  25. J Hosp Infect. 2003 Sep;55(1):33-8 - PubMed
  26. BMC Microbiol. 2007 May 21;7:43 - PubMed
  27. Antimicrob Agents Chemother. 2013 Jan;57(1):212-9 - PubMed
  28. Front Microbiol. 2015 Oct 13;6:1101 - PubMed
  29. Microb Ecol. 2008 Feb;55(2):184-93 - PubMed
  30. Appl Environ Microbiol. 2004 Apr;70(4):2161-71 - PubMed
  31. J Clin Microbiol. 2014 Apr;52(4):1089-97 - PubMed
  32. Int J Food Microbiol. 2009 Jan 15;128(3):460-6 - PubMed
  33. Clin Microbiol Rev. 2010 Apr;23(2):382-98 - PubMed
  34. Front Microbiol. 2016 Feb 03;7:69 - PubMed
  35. Infect Immun. 2010 Sep;78(9):3813-21 - PubMed
  36. Gut. 2003 Mar;52(3):436-7 - PubMed
  37. Appl Environ Microbiol. 2004 Dec;70(12):7372-7 - PubMed
  38. FEMS Microbiol Lett. 1996 Aug 1;141(2-3):151-6 - PubMed
  39. Appl Environ Microbiol. 1997 Dec;63(12):4883-90 - PubMed
  40. J Microbiol Methods. 2009 Sep;78(3):265-70 - PubMed
  41. J Microbiol Biotechnol. 2015 Jun;25(6):872-9 - PubMed
  42. J Clin Microbiol. 1998 Jan;36(1):325-6 - PubMed
  43. FEMS Microbiol Rev. 2005 Sep;29(4):813-35 - PubMed

Publication Types