Display options
Share it on

PLoS Comput Biol. 2016 Jul 25;12(7):e1005014. doi: 10.1371/journal.pcbi.1005014. eCollection 2016 Jul.

Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes.

PLoS computational biology

Joshua Mayourian, Ruben M Savizky, Eric A Sobie, Kevin D Costa

Affiliations

  1. Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America.
  2. Department of Chemistry, The Cooper Union, New York, New York, United States of America.
  3. Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America.

PMID: 27454812 PMCID: PMC4959759 DOI: 10.1371/journal.pcbi.1005014

Abstract

Human mesenchymal stem cell (hMSC) delivery has demonstrated promise in preclinical and clinical trials for myocardial infarction therapy; however, broad acceptance is hindered by limited understanding of hMSC-human cardiomyocyte (hCM) interactions. To better understand the electrophysiological consequences of direct heterocellular connections between hMSCs and hCMs, three original mathematical models were developed, representing an experimentally verified triad of hMSC families with distinct functional ion channel currents. The arrhythmogenic risk of such direct electrical interactions in the setting of healthy adult myocardium was predicted by coupling and fusing these hMSC models to the published ten Tusscher midcardial hCM model. Substantial variations in action potential waveform-such as decreased action potential duration (APD) and plateau height-were found when hCMs were coupled to the two hMSC models expressing functional delayed rectifier-like human ether à-go-go K+ channel 1 (hEAG1); the effects were exacerbated for fused hMSC-hCM hybrid cells. The third family of hMSCs (Type C), absent of hEAG1 activity, led to smaller single-cell action potential alterations during coupling and fusion, translating to longer tissue-level mean action potential wavelength. In a simulated 2-D monolayer of cardiac tissue, re-entry vulnerability with low (5%) hMSC insertion was approximately eight-fold lower with Type C hMSCs compared to hEAG1-functional hMSCs. A 20% decrease in APD dispersion by Type C hMSCs compared to hEAG1-active hMSCs supports the claim of reduced arrhythmogenic potential of this cell type with low hMSC insertion. However, at moderate (15%) and high (25%) hMSC insertion, the vulnerable window increased independent of hMSC type. In summary, this study provides novel electrophysiological models of hMSCs, predicts possible arrhythmogenic effects of hMSCs when directly coupled to healthy hCMs, and proposes that isolating a subset of hMSCs absent of hEAG1 activity may offer increased safety as a cell delivery cardiotherapy at low levels of hMSC-hCM coupling.

References

  1. Mol Med Rep. 2013 May;7(5):1617-23 - PubMed
  2. Am J Physiol. 1999 Jan;276(1 Pt 2):H269-83 - PubMed
  3. Stem Cells. 2005 Mar;23 (3):371-82 - PubMed
  4. Nature. 2006 Mar 23;440(7083):463-9 - PubMed
  5. J Am Coll Cardiol. 2005 Nov 15;46(10):1943-52 - PubMed
  6. Stem Cell Rev. 2013 Jun;9(3):254-65 - PubMed
  7. Cell Stem Cell. 2012 Mar 2;10(3):244-58 - PubMed
  8. J Am Coll Cardiol. 2002 Aug 21;40(4):731-6 - PubMed
  9. Front Physiol. 2014 Oct 29;5:419 - PubMed
  10. World J Stem Cells. 2011 Mar 26;3(3):19-24 - PubMed
  11. Acta Physiol Scand. 1979 Aug;106(4):395-409 - PubMed
  12. Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H600-9 - PubMed
  13. Circulation. 2000 Oct 3;102(14):1664-70 - PubMed
  14. Cell Calcium. 2003 Aug;34(2):145-56 - PubMed
  15. Circ Arrhythm Electrophysiol. 2013 Apr;6(2):380-91 - PubMed
  16. PLoS Comput Biol. 2010 Sep 02;6(9):e1000914 - PubMed
  17. Chaos. 2002 Sep;12(3):788-799 - PubMed
  18. Ann N Y Acad Sci. 2006 Oct;1080:395-414 - PubMed
  19. JAMA. 2014 Jan 1;311(1):62-73 - PubMed
  20. Int J Cardiol. 2006 Aug 10;111(2):231-9 - PubMed
  21. Q Rev Biophys. 2006 Feb;39(1):57-116 - PubMed
  22. J Mol Cell Cardiol. 1986 Oct;18(10):1033-45 - PubMed
  23. Circulation. 2014 Jan 21;129(3):e28-e292 - PubMed
  24. Sci Rep. 2015 Jul 10;5:12043 - PubMed
  25. PLoS Comput Biol. 2014 Mar 27;10(3):e1003543 - PubMed
  26. Glia. 2000 Mar;30(1):39-48 - PubMed
  27. Circulation. 1983 Jun;67(6):1356-67 - PubMed
  28. Phys Rev Lett. 2002 May 20;88(20):208101 - PubMed
  29. Circ Res. 1999 Jun 11;84(11):1318-31 - PubMed
  30. Biophys J. 2009 Feb 18;96(4):1264-74 - PubMed
  31. Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2040-52 - PubMed
  32. J Cardiovasc Electrophysiol. 2003 Aug;14(8):841-8 - PubMed
  33. Biophys J. 2007 Jun 1;92(11):4121-32 - PubMed
  34. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2935-40 - PubMed
  35. Circ Res. 2007 Oct 12;101(8):839-47 - PubMed
  36. Circ Res. 1993 Dec;73(6):1061-76 - PubMed
  37. Circ Res. 2004 Apr 30;94(8):1083-90 - PubMed
  38. Nature. 2008 Feb 21;451(7181):937-42 - PubMed
  39. Circ Res. 1998 Jan 9-23;82(1):63-81 - PubMed
  40. Cardiovasc Res. 1977 May;11(3):210-8 - PubMed
  41. Heart Rhythm. 2009 Nov;6(11):1641-9 - PubMed
  42. J Mol Cell Cardiol. 2012 Jun;52(6):1249-56 - PubMed
  43. Comp Med. 2009 Jun;59(3):272-9 - PubMed
  44. Phys Rev Lett. 2002 Feb 4;88(5):058101 - PubMed
  45. Stem Cells Transl Med. 2015 Jun;4(6):685-94 - PubMed
  46. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 1):062902 - PubMed
  47. Card Electrophysiol Clin. 2015 Jun;7(2):357-70 - PubMed
  48. Circ Res. 2014 Apr 11;114(8):1302-10 - PubMed
  49. Circ Res. 2002 Aug 23;91(4):331-8 - PubMed
  50. PLoS One. 2014 Feb 28;9(2):e90024 - PubMed
  51. Europace. 2007 Nov;9 Suppl 6:vi38-45 - PubMed
  52. Int J Cardiol. 2011 Nov 3;152(3):314-20 - PubMed
  53. J Physiol. 1952 Aug;117(4):500-44 - PubMed
  54. Regen Med. 2012 Nov;7(6 Suppl):17-24 - PubMed
  55. Biochem Biophys Res Commun. 2004 Mar 26;316(1):244-51 - PubMed
  56. Circulation. 2006 Apr 18;113(15):1832-41 - PubMed
  57. IEEE Trans Biomed Eng. 2012 May;59(5):1398-407 - PubMed
  58. PLoS One. 2014 Jul 23;9(7):e103273 - PubMed
  59. Transpl Int. 2008 Dec;21(12 ):1181-9 - PubMed
  60. Eur J Echocardiogr. 2010 Mar;11(2):165-71 - PubMed
  61. Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2225-55 - PubMed
  62. Phys Med Biol. 2006 Dec 7;51(23):6141-56 - PubMed
  63. J Physiol. 2004 Mar 16;555(Pt 3):617-26 - PubMed
  64. Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1573-89 - PubMed
  65. Ann Biomed Eng. 2008 Jan;36(1):41-56 - PubMed
  66. J Cardiovasc Electrophysiol. 2005 Feb;16(2):151-61 - PubMed
  67. J Histochem Cytochem. 2009 Feb;57(2):167-76 - PubMed
  68. Circ Res. 1969 Mar;24(3):409-45 - PubMed
  69. Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2332-41 - PubMed
  70. J Physiol. 1977 Jun;268(1):177-210 - PubMed
  71. PLoS Comput Biol. 2011 May;7(5):e1002061 - PubMed
  72. Cardiovasc Res. 2006 Nov 1;72(2):282-91 - PubMed
  73. Biomed Eng Online. 2005 Feb 18;4:11 - PubMed
  74. Circ Res. 1995 May;76(5):790-801 - PubMed
  75. Circ Res. 2015 Apr 10;116(8):1413-30 - PubMed
  76. J Electrocardiol. 2003;36 Suppl:1-5 - PubMed
  77. J Electrocardiol. 1999;32 Suppl:177-84 - PubMed
  78. Receptors Channels. 2001;7(5):345-56 - PubMed
  79. J Physiol. 2004 Feb 1;554(Pt 3):659-72 - PubMed
  80. Tissue Eng Part A. 2015 Aug;21(15-16):2272-80 - PubMed

MeSH terms

Publication Types

Grant support