Display options
Share it on

Nature. 2016 Aug 04;536(7614):63-6. doi: 10.1038/nature18648.

Demonstration of a small programmable quantum computer with atomic qubits.

Nature

S Debnath, N M Linke, C Figgatt, K A Landsman, K Wright, C Monroe

Affiliations

  1. Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
  2. Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA.
  3. ionQ, Inc., College Park, Maryland 20742 USA.

PMID: 27488798 DOI: 10.1038/nature18648

Abstract

Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

References

  1. Nature. 2002 Jun 13;417(6890):709-11 - PubMed
  2. Phys Rev Lett. 2003 Apr 18;90(15):157902 - PubMed
  3. Nature. 2007 Nov 15;450(7168):393-6 - PubMed
  4. Phys Rev Lett. 2015 Mar 27;114(12):120502 - PubMed
  5. Science. 2005 May 13;308(5724):997-1000 - PubMed
  6. Phys Rev Lett. 2006 Aug 4;97(5):050505 - PubMed
  7. Phys Rev Lett. 2010 Apr 9;104(14):140501 - PubMed
  8. Phys Rev Lett. 1995 May 15;74(20):4091-4094 - PubMed
  9. Science. 2016 Mar 4;351(6277):1068-70 - PubMed
  10. Phys Rev Lett. 1993 Feb 8;70(6):818-821 - PubMed
  11. Phys Rev Lett. 2014 May 16;112(19):190502 - PubMed
  12. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(2):344-54 - PubMed
  13. Phys Rev Lett. 2010 Jul 23;105(4):040504 - PubMed
  14. Nature. 2014 Apr 24;508(7497):500-3 - PubMed
  15. Rev Sci Instrum. 2016 May;87(5):053110 - PubMed
  16. Nature. 2001 Dec 20-27;414(6866):883-7 - PubMed
  17. Nature. 2009 Jul 9;460(7252):240-4 - PubMed
  18. Phys Rev Lett. 2016 Aug 5;117(6):060505 - PubMed
  19. Sci Adv. 2015 Oct 30;1(9):e1500707 - PubMed
  20. Nature. 2003 Jan 2;421(6918):48-50 - PubMed

Publication Types