Display options
Share it on

PLoS One. 2016 Sep 22;11(9):e0163235. doi: 10.1371/journal.pone.0163235. eCollection 2016.

Identification of Non-Coding RNAs in the Candida parapsilosis Species Group.

PloS one

Paul D Donovan, Markus S Schröder, Desmond G Higgins, Geraldine Butler

Affiliations

  1. School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
  2. School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.

PMID: 27658249 PMCID: PMC5033589 DOI: 10.1371/journal.pone.0163235

Abstract

The Candida CTG clade is a monophyletic group of fungal species that translates CTG as serine, and includes the pathogens Candida albicans and Candida parapsilosis. Research has typically focused on identifying protein-coding genes in these species. Here, we use bioinformatic and experimental approaches to annotate known classes of non-coding RNAs in three CTG-clade species, Candida parapsilosis, Candida orthopsilosis and Lodderomyces elongisporus. We also update the annotation of ncRNAs in the C. albicans genome. The majority of ncRNAs identified were snoRNAs. Approximately 50% of snoRNAs (including most of the C/D box class) are encoded in introns. Most are within mono- and polycistronic transcripts with no protein coding potential. Five polycistronic clusters of snoRNAs are highly conserved in fungi. In polycistronic regions, splicing occurs via the classical pathway, as well as by nested and recursive splicing. We identified spliceosomal small nuclear RNAs, the telomerase RNA component, signal recognition particle, RNase P RNA component and the related RNase MRP RNA component in all three genomes. Stem loop IV of the U2 spliceosomal RNA and the associated binding proteins were lost from the ancestor of C. parapsilosis and C. orthopsilosis, following the divergence from L. elongisporus. The RNA component of the MRP is longer in C. parapsilosis, C. orthopsilosis and L. elongisporus than in S. cerevisiae, but is substantially shorter than in C. albicans.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Pediatr Infect Dis J. 2013 May;32(5):e206-16 - PubMed
  2. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10024-9 - PubMed
  3. BMC Genomics. 2011 Dec 22;12:628 - PubMed
  4. Nucleic Acids Res. 2005 Aug 08;33(14):4485-95 - PubMed
  5. Nat Biotechnol. 2007 Mar;25(3):319-26 - PubMed
  6. Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7 - PubMed
  7. Antimicrob Agents Chemother. 2011 Dec;55(12):5590-6 - PubMed
  8. BMC Genomics. 2010 May 10;11:290 - PubMed
  9. RNA. 2007 Jan;13(1):138-50 - PubMed
  10. J Clin Microbiol. 2005 Jan;43(1):284-92 - PubMed
  11. Genome Res. 2009 Dec;19(12):2231-44 - PubMed
  12. RNA. 2014 Sep;20(9):1376-85 - PubMed
  13. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W135-41 - PubMed
  14. Genomics. 2009 Aug;94(2):83-8 - PubMed
  15. RNA. 2007 Dec;13(12):2066-80 - PubMed
  16. Genome Biol. 2013 Apr 25;14(4):R36 - PubMed
  17. Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5 - PubMed
  18. Antonie Van Leeuwenhoek. 1966;32(1):1-5 - PubMed
  19. J Clin Microbiol. 2008 Jan;46(1):374-6 - PubMed
  20. Mol Biol Evol. 2013 Jun;30(6):1281-91 - PubMed
  21. PLoS One. 2012;7(4):e35750 - PubMed
  22. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7329-34 - PubMed
  23. RNA Biol. 2009 Jul-Aug;6(3):208-20 - PubMed
  24. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 - PubMed
  25. Mol Cell Biol. 1999 Feb;19(2):1144-58 - PubMed
  26. Science. 1999 Feb 19;283(5405):1168-71 - PubMed
  27. C R Biol. 2011 Aug-Sep;334(8-9):607-11 - PubMed
  28. Genome Biol. 2010;11(7):R71 - PubMed
  29. Nucleic Acids Res. 1993 Aug 25;21(17):4039-45 - PubMed
  30. Genome Biol. 2013;14(9):R97 - PubMed
  31. RNA. 1998 Sep;4(9):1096-110 - PubMed
  32. Genome Res. 2009 Sep;19(9):1630-8 - PubMed
  33. Clin Microbiol Rev. 2008 Oct;21(4):606-25 - PubMed
  34. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  35. Genes Dev. 1995 Jun 1;9(11):1411-24 - PubMed
  36. Eukaryot Cell. 2010 Nov;9(11):1734-46 - PubMed
  37. Genome Res. 2007 Apr;17(4):492-502 - PubMed
  38. Science. 2010 Nov 5;330(6005):838-41 - PubMed
  39. PLoS Comput Biol. 2014 Oct 30;10(10):e1003907 - PubMed
  40. EMBO J. 2003 Jul 15;22(14):3479-85 - PubMed
  41. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13212-7 - PubMed
  42. PLoS Pathog. 2014 Sep 18;10(9):e1004365 - PubMed
  43. Mol Cell Biol. 1998 Jun;18(6):3376-83 - PubMed
  44. Nucleic Acids Res. 1995 May 11;23(9):1481-6 - PubMed
  45. Cell. 2012 Sep 14;150(6):1170-81 - PubMed
  46. Clin Infect Dis. 2004 Aug 1;39(3):309-17 - PubMed
  47. BMC Genomics. 2009 Nov 08;10:515 - PubMed
  48. PLoS One. 2013;8(3):e58547 - PubMed
  49. Pediatrics. 2006 May;117(5):1680-7 - PubMed
  50. Sci Transl Med. 2012 Dec 19;4(165):165rv13 - PubMed
  51. RNA Biol. 2009 Nov-Dec;6(5):508-16 - PubMed
  52. Nucleic Acids Res. 2004 Aug 11;32(14):4281-96 - PubMed
  53. Bioinformatics. 2013 Nov 15;29(22):2933-5 - PubMed
  54. BMC Bioinformatics. 2014 Jun 12;15:182 - PubMed
  55. Nucleic Acids Res. 2012 Jan;40(Database issue):D667-74 - PubMed
  56. Genes Dev. 1998 Jun 1;12(11):1678-90 - PubMed
  57. PLoS Genet. 2015 Oct 30;11(10):e1005626 - PubMed
  58. Nature. 2009 Jun 4;459(7247):657-62 - PubMed

Publication Types

Grant support