Display options
Share it on

Nat Commun. 2016 Aug 05;7:12356. doi: 10.1038/ncomms12356.

Electron-hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator.

Nature communications

Yoshitaka Kawasugi, Kazuhiro Seki, Yusuke Edagawa, Yoshiaki Sato, Jiang Pu, Taishi Takenobu, Seiji Yunoki, Hiroshi M Yamamoto, Reizo Kato

Affiliations

  1. Condensed Molecular Materials Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
  2. Computational Condensed Matter Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
  3. Computational Materials Science Research Team, RIKEN Advanced Institute for Computational Science (AICS), Kobe, Hyogo 650-0047, Japan.
  4. Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan.
  5. Computational Quantum Matter Research Team, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
  6. Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.

PMID: 27492864 PMCID: PMC5155723 DOI: 10.1038/ncomms12356

Abstract

It is widely recognized that the effect of doping into a Mott insulator is complicated and unpredictable, as can be seen by examining the Hall coefficient in high Tc cuprates. The doping effect, including the electron-hole doping asymmetry, may be more straightforward in doped organic Mott insulators owing to their simple electronic structures. Here we investigate the doping asymmetry of an organic Mott insulator by carrying out electric-double-layer transistor measurements and using cluster perturbation theory. The calculations predict that strongly anisotropic suppression of the spectral weight results in the Fermi arc state under hole doping, while a relatively uniform spectral weight results in the emergence of a non-interacting-like Fermi surface (FS) in the electron-doped state. In accordance with the calculations, the experimentally observed Hall coefficients and resistivity anisotropy correspond to the pocket formed by the Fermi arcs under hole doping and to the non-interacting FS under electron doping.

References

  1. Phys Rev Lett. 2009 Aug 7;103(6):067004 - PubMed
  2. Phys Rev Lett. 2005 Oct 21;95(17):177001 - PubMed
  3. Adv Mater. 2014 Jun 4;26(21):3490-5 - PubMed
  4. Phys Rev Lett. 2006 Jul 28;97(4):046402 - PubMed
  5. Phys Rev Lett. 2006 Dec 22;97(25):257004 - PubMed
  6. Phys Rev Lett. 2003 Nov 14;91(20):206402 - PubMed
  7. Phys Rev Lett. 2003 Jul 11;91(2):027001 - PubMed
  8. Adv Mater. 2012 Aug 22;24(32):4457-62 - PubMed
  9. Phys Rev B Condens Matter. 1988 Jul 1;38(1):938-941 - PubMed
  10. Phys Rev Lett. 2004 Mar 26;92(12):126401 - PubMed
  11. Phys Rev Lett. 2012 Feb 17;108(7):076401 - PubMed
  12. Phys Rev B Condens Matter. 1993 Jul 1;48(1):418-425 - PubMed
  13. Phys Rev Lett. 2015 Feb 13;114(6):067002 - PubMed
  14. Nat Commun. 2013;4:2379 - PubMed
  15. Phys Rev Lett. 1996 Jun 17;76(25):4841-4844 - PubMed
  16. Phys Rev Lett. 2009 Sep 11;103(11):116801 - PubMed
  17. Phys Rev Lett. 2003 Sep 5;91(10):107001 - PubMed
  18. Phys Rev Lett. 1985 Jul 22;55(4):418-421 - PubMed
  19. Phys Rev Lett. 2000 Jan 17;84(3):522-5 - PubMed

Publication Types