Display options
Share it on

Front Pharmacol. 2016 Sep 12;7:300. doi: 10.3389/fphar.2016.00300. eCollection 2016.

Ca(2+)-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions.

Frontiers in pharmacology

Ahmet U Uzun, Ingra Mannhardt, Kaja Breckwoldt, András Horváth, Silke S Johannsen, Arne Hansen, Thomas Eschenhagen, Torsten Christ

Affiliations

  1. Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany.
  2. Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of SzegedSzeged, Hungary.
  3. Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany; Department of General and Interventional Cardiology, University Heart Center HamburgHamburg, Germany.

PMID: 27672365 PMCID: PMC5018497 DOI: 10.3389/fphar.2016.00300

Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca(2+)-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (n = 289), EHT 45 ± 1 pF (n = 460), atrial CM 87 ± 3 pF (n = 196), ventricular CM 126 ± 8 pF (n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF (n = 207) for ML and 12 ± 1 pA/pF (n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF (p < 0.05, n = 196) for atrial CM and 6 ± 1 pA/pF (p < 0.05, n = 47) for ventricular CM]. However, ML and EHT showed robust T-type Ca(2+)-currents (ICa,T). While (-)-Bay K 8644, that activates ICa,L directly, increased ICa,Lto the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (-)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (-logEC50: 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (-logEC50: 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation.

Keywords: 5-hydroxytryptamine; L-type Ca2+-channel; T-type Ca2+-channel; human induced pluripotent stem cell-derived cardiomyocytes; protein kinase A; β-adrenoceptor

References

  1. J Mol Cell Cardiol. 2001 Aug;33(8):1515-25 - PubMed
  2. PLoS One. 2011;6(10 ):e26397 - PubMed
  3. Naunyn Schmiedebergs Arch Pharmacol. 1992 Nov;346(5):486-9 - PubMed
  4. Pflugers Arch. 2014 Apr;466(4):791-9 - PubMed
  5. J Mol Cell Cardiol. 1991 Aug;23(8):929-37 - PubMed
  6. Cell Stem Cell. 2012 Jan 6;10(1):16-28 - PubMed
  7. J Physiol. 1974 Oct;242(2):429-51 - PubMed
  8. J Med Chem. 2012 Jan 26;55(2):697-708 - PubMed
  9. Channels (Austin). 2011 Nov-Dec;5(6):530-7 - PubMed
  10. Mol Pharmacol. 1992 Feb;41(2):346-51 - PubMed
  11. Am J Physiol. 1989 May;256(5 Pt 2):H1505-8 - PubMed
  12. Assay Drug Dev Technol. 2014 Aug;12(6):352-60 - PubMed
  13. Front Physiol. 2012 Aug 31;3:346 - PubMed
  14. PLoS One. 2012;7(9):e45489 - PubMed
  15. J Mol Cell Cardiol. 2004 Dec;37(6):1147-58 - PubMed
  16. Pflugers Arch. 2012 Aug;464(2):167-74 - PubMed
  17. J Biol Chem. 1984 Aug 25;259(16):10020-4 - PubMed
  18. Pediatr Res. 2001 Nov;50(5):569-74 - PubMed
  19. Cardiovasc Res. 1999 Oct;44(1):121-31 - PubMed
  20. J Mol Cell Cardiol. 2006 Oct;41(4):716-23 - PubMed
  21. Nat Protoc. 2011 May;6(5):689-700 - PubMed
  22. Channels (Austin). 2011 May-Jun;5(3):251-61 - PubMed
  23. Circ Res. 2014 Jan 31;114(3):511-23 - PubMed
  24. Physiol Rev. 2014 Jan;94(1):303-26 - PubMed
  25. Br J Pharmacol. 1990 Aug;100(4):879-85 - PubMed
  26. Br J Pharmacol. 2011 Feb;162(4):823-39 - PubMed
  27. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11193-8 - PubMed
  28. Circ Res. 2000 Mar 31;86(6):628-35 - PubMed
  29. Receptors Channels. 1995;3(2):71-81 - PubMed
  30. Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H2006-17 - PubMed
  31. J Membr Biol. 1990 Jun;116(1):9-17 - PubMed
  32. Naunyn Schmiedebergs Arch Pharmacol. 1992 Nov;346(5):482-5 - PubMed
  33. Methods Mol Biol. 2014;1181:121-9 - PubMed
  34. J Mol Cell Cardiol. 1994 Oct;26(10):1307-20 - PubMed
  35. Nature. 1983 Jun 9-15;303(5917):535-7 - PubMed
  36. PLoS One. 2012;7(7):e41958 - PubMed
  37. Circulation. 2004 Oct 26;110(17):2651-7 - PubMed
  38. Circulation. 2013 Sep 10;128(11 Suppl 1):S3-13 - PubMed
  39. Circulation. 2000 Aug 8;102(6):692-7 - PubMed
  40. J Mol Cell Cardiol. 1991 Jan;23(1):41-54 - PubMed
  41. Am J Physiol. 1995 Nov;269(5 Pt 2):H1695-703 - PubMed
  42. Annu Rev Physiol. 1983;45:341-58 - PubMed
  43. Am J Physiol. 1997 Jan;272(1 Pt 2):H227-35 - PubMed
  44. Naunyn Schmiedebergs Arch Pharmacol. 1990 Mar;341(3):232-9 - PubMed
  45. Biochem Soc Trans. 2010 Aug;38(4):1037-45 - PubMed
  46. Am J Physiol. 1989 May;256(5 Pt 2):H1478-92 - PubMed
  47. J Physiol. 1988 Jan;395:233-53 - PubMed
  48. J Physiol. 1992 Aug;454:657-72 - PubMed
  49. Am J Physiol. 1991 Aug;261(2 Pt 2):H364-79 - PubMed
  50. Nat Methods. 2014 Aug;11(8):855-60 - PubMed
  51. Circ Res. 2002 Sep 20;91(6):517-24 - PubMed
  52. Naunyn Schmiedebergs Arch Pharmacol. 2004 Dec;370(6):474-83 - PubMed
  53. Eur Heart J. 1989 Jun;10 Suppl B:29-37 - PubMed
  54. Nature. 2011 Mar 10;471(7337):230-4 - PubMed
  55. J Mol Cell Cardiol. 2010 Jan;48(1):65-70 - PubMed
  56. J Mol Cell Cardiol. 2010 Jan;48(1):161-71 - PubMed
  57. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5340-4 - PubMed

Publication Types