Display options
Share it on

Bone Res. 2016 Sep 20;4:16027. doi: 10.1038/boneres.2016.27. eCollection 2016.

Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes.

Bone research

Ying Yang, Haiyong Ao, Yugang Wang, Wentao Lin, Shengbing Yang, Shuhong Zhang, Zhifeng Yu, Tingting Tang

Affiliations

  1. Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine , Shanghai, People's Republic of China.

PMID: 27672479 PMCID: PMC5028847 DOI: 10.1038/boneres.2016.27

Abstract

Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), could effectively inhibit bacterial adherence and biofilm formation in vitro. Therefore, the aim of this study was to further investigate the in vitro cytocompatibility with osteogenic cells and the in vivo anti-infection activity of titanium implants with HACC-loaded nanotubes (NT-H). The titanium implant (Ti), nanotubes without polymer loading (NT), and nanotubes loaded with chitosan (NT-C) were fabricated and served as controls. Firstly, we evaluated the cytocompatibility of these specimens with human bone marrow-derived mesenchymal stem cells in vitro. The observation of cell attachment, proliferation, spreading, and viability in vitro showed that NT-H has improved osteogenic activity compared with Ti and NT-C. A prophylaxis rat model with implantation in the femoral medullary cavity and inoculation with methicillin-resistant Staphylococcus aureus was established and evaluated by radiographical, microbiological, and histopathological assessments. Our in vivo study demonstrated that NT-H coatings exhibited significant anti-infection capability compared with the Ti and NT-C groups. In conclusion, HACC-loaded nanotubes fabricated on a titanium substrate show good compatibility with osteogenic cells and enhanced anti-infection ability in vivo, providing a good foundation for clinical application to combat orthopedic implant-associated infections.

References

  1. Injury. 1999 Sep;30(7):509-10 - PubMed
  2. Microbes Infect. 2000 Apr;2(4):391-400 - PubMed
  3. J Hosp Infect. 2001 Oct;49(2):87-93 - PubMed
  4. Biomaterials. 2002 Jan;23(2):343-7 - PubMed
  5. Bone. 2003 May;32(5):521-31 - PubMed
  6. J Trauma. 2003 Aug;55(2):338-44 - PubMed
  7. Biomacromolecules. 2003 Nov-Dec;4(6):1457-65 - PubMed
  8. J Orthop Trauma. 2004 Feb;18(2):96-101 - PubMed
  9. Int J Biol Macromol. 2004 Apr;34(1-2):121-6 - PubMed
  10. J Bone Joint Surg Br. 1992 Sep;74(5):770-4 - PubMed
  11. J Colloid Interface Sci. 2005 Dec 1;292(1):219-27 - PubMed
  12. Biomaterials. 2006 Apr;27(11):2331-9 - PubMed
  13. Biomacromolecules. 2007 Jan;8(1):122-7 - PubMed
  14. Biomaterials. 2007 Nov;28(32):4880-8 - PubMed
  15. J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):470-80 - PubMed
  16. Nanotechnology. 2011 Jul 22;22(29):295102 - PubMed
  17. Biomaterials. 2011 Oct;32(29):6900-11 - PubMed
  18. Antimicrob Agents Chemother. 2011 Nov;55(11):5010-7 - PubMed
  19. Biomaterials. 2012 Jan;33(2):365-77 - PubMed
  20. Nanoscale Res Lett. 2011 Oct 31;6:571 - PubMed
  21. Biomaterials. 2012 Apr;33(10):2813-22 - PubMed
  22. Nat Med. 2012 Jan 29;18(2):307-14 - PubMed
  23. Colloids Surf B Biointerfaces. 2013 Jun 1;106:11-21 - PubMed
  24. Int J Nanomedicine. 2013;8:3093-105 - PubMed
  25. Int J Nanomedicine. 2014 Mar 07;9:1215-30 - PubMed
  26. PLoS One. 2014 Apr 01;9(4):e93570 - PubMed
  27. Colloids Surf B Biointerfaces. 2014 Jul 1;119:115-25 - PubMed
  28. ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12214-25 - PubMed
  29. Antimicrob Agents Chemother. 2014 Oct;58(10):6016-23 - PubMed
  30. Front Cell Infect Microbiol. 2014 Aug 19;4:112 - PubMed
  31. Expert Opin Drug Deliv. 2015 Jan;12(1):103-27 - PubMed
  32. Biomaterials. 2015 Jun;53:211-20 - PubMed
  33. Colloids Surf B Biointerfaces. 2015 Oct 1;134:370-6 - PubMed
  34. Bone Res. 2015 Nov 10;3:15029 - PubMed
  35. Int J Nanomedicine. 2016 May 19;11:2223-34 - PubMed
  36. Biomaterials. 1989 Jul;10(5):325-8 - PubMed
  37. Materials (Basel). 2016 Mar 03;9(3):null - PubMed
  38. J Orthop Translat. 2015 Sep 26;5:16-25 - PubMed
  39. Infect Immun. 1985 Mar;47(3):581-6 - PubMed
  40. J Bone Joint Surg Br. 1985 Mar;67(2):229-31 - PubMed
  41. Clin Orthop Relat Res. 1994 Jan;(298):106-18 - PubMed
  42. J Orthop Res. 1996 Jul;14(4):663-7 - PubMed
  43. J Antimicrob Chemother. 1997 May;39 Suppl A:1-6 - PubMed

Publication Types