Display options
Share it on

Nat Microbiol. 2016 Sep 19;1:16164. doi: 10.1038/nmicrobiol.2016.164.

Cross-reactive antibodies enhance live attenuated virus infection for increased immunogenicity.

Nature microbiology

Kuan Rong Chan, Xiaohui Wang, Wilfried A A Saron, Esther Shuyi Gan, Hwee Cheng Tan, Darren Z L Mok, Summer Li-Xin Zhang, Yie Hou Lee, Cui Liang, Limin Wijaya, Sujoy Ghosh, Yin Bun Cheung, Steven R Tannenbaum, Soman N Abraham, Ashley L St John, Jenny G H Low, Eng Eong Ooi

Affiliations

  1. Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857.
  2. Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.
  3. Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore 138602.
  4. KK Research Centre, KK Women's and Children's Hospital, Singapore 229899.
  5. Department of Infectious Diseases, Singapore General Hospital, Singapore 169856.
  6. Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857.
  7. Center for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857.
  8. Department for International Health, University of Tampere, 33100 Finland.
  9. Department of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  10. Department of Immunology and the Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

PMID: 27642668 PMCID: PMC7097525 DOI: 10.1038/nmicrobiol.2016.164

Abstract

Vaccination has achieved remarkable successes in the control of childhood viral diseases. To control emerging infections, however, vaccines will need to be delivered to older individuals who, unlike infants, probably have had prior infection or vaccination with related viruses and thus have cross-reactive antibodies against the vaccines. Whether and how these cross-reactive antibodies impact live attenuated vaccination efficacy is unclear. Using an open-label randomized trial design, we show that subjects with a specific range of cross-reactive antibody titres from a prior inactivated Japanese encephalitis vaccination enhanced yellow fever (YF) immunogenicity upon YF vaccination. Enhancing titres of cross-reactive antibodies prolonged YF vaccine viraemia, provoked greater pro-inflammatory responses, and induced adhesion molecules intrinsic to the activating Fc-receptor signalling pathway, namely immune semaphorins, facilitating immune cell interactions and trafficking. Our findings clinically demonstrate antibody-enhanced infection and suggest that vaccine efficacy could be improved by exploiting cross-reactive antibodies.

References

  1. J Immunol. 2016 Jan 1;196(1):459-68 - PubMed
  2. Nat Rev Immunol. 2011 Nov 04;11(12):865-72 - PubMed
  3. Nature. 2007 Apr 5;446(7136):680-4 - PubMed
  4. Blood. 2012 Mar 29;119(13):3084-96 - PubMed
  5. N Engl J Med. 2015 Jan 8;372(2):113-23 - PubMed
  6. Lipids. 2007 Aug;42(8):707-16 - PubMed
  7. J Clin Invest. 2014 Sep;124(9):3945-59 - PubMed
  8. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12479-84 - PubMed
  9. Trials. 2015 Apr 10;16:147 - PubMed
  10. Clin Infect Dis. 2010 Jun 15;50(12):1636-40 - PubMed
  11. Nature. 2002 Oct 10;419(6907):629-33 - PubMed
  12. N Engl J Med. 2014 Oct 16;371(16):1481-95 - PubMed
  13. Science. 2014 Aug 22;345(6199):922-5 - PubMed
  14. J Exp Med. 1953 Dec;98(6):641-56 - PubMed
  15. PLoS Negl Trop Dis. 2013 Aug 15;7(8):e2373 - PubMed
  16. J Exp Med. 2008 Dec 22;205(13):3119-31 - PubMed
  17. Lancet. 2014 Oct 11;384(9951):1358-65 - PubMed
  18. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12300-6 - PubMed
  19. Lancet Infect Dis. 2010 Oct;10(10):712-22 - PubMed
  20. Eur J Clin Nutr. 2002 Aug;56 Suppl 3:S14-9 - PubMed
  21. J Immunol. 1991 Jul 15;147(2):621-6 - PubMed
  22. Respir Res. 2006 Oct 14;7:126 - PubMed
  23. JAMA. 1976 Jan 5;235(1):31-4 - PubMed
  24. Br J Cancer. 2012 Nov 20;107(11):1869-75 - PubMed
  25. J Virol. 2011 Feb;85(4):1671-83 - PubMed
  26. Am J Trop Med Hyg. 1990 Feb;42(2):179-84 - PubMed
  27. Nat Immunol. 2009 Jan;10(1):116-125 - PubMed
  28. Annu Rev Genomics Hum Genet. 2013;14:215-43 - PubMed
  29. J Immunol. 2006 Jan 1;176(1):265-74 - PubMed
  30. N Engl J Med. 2016 Feb 18;374(7):601-4 - PubMed
  31. J Exp Med. 1991 Dec 1;174(6):1323-33 - PubMed
  32. Sci Rep. 2016 May 17;6:26100 - PubMed
  33. J Infect Dis. 2013 Sep;208(6):1026-33 - PubMed
  34. Immunity. 2010 Oct 29;33(4):437-40 - PubMed
  35. J Exp Med. 1977 Jul 1;146(1):201-17 - PubMed
  36. Nat Rev Immunol. 2003 Dec;3(12):939-51 - PubMed
  37. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  38. Lancet. 2008 Nov 29;372(9653):1881-1893 - PubMed
  39. BMC Infect Dis. 2015 Oct 14;15:420 - PubMed
  40. Nature. 2011 Jun 15;474(7351):327-36 - PubMed
  41. Nature. 2015 Jul 30;523(7562):612-6 - PubMed
  42. Lancet. 2015 Aug 29;386(9996):857-66 - PubMed
  43. Int J Cancer. 2012 Feb 15;130(4):857-64 - PubMed
  44. Cell. 1993 Dec 31;75(7):1389-99 - PubMed
  45. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2722-7 - PubMed
  46. J Immunol. 2006 Dec 15;177(12):8440-7 - PubMed
  47. BMC Infect Dis. 2014 Jul 15;14:391 - PubMed
  48. J Clin Microbiol. 2012 Dec;50(12):4054-60 - PubMed
  49. Nat Rev Immunol. 2012 Feb 17;12(3):180-90 - PubMed
  50. PLoS Pathog. 2014 Oct 02;10(10):e1004386 - PubMed
  51. Nat Immunol. 2008 Jan;9(1):17-23 - PubMed
  52. Trends Immunol. 2012 Mar;33(3):127-35 - PubMed
  53. N Engl J Med. 2015 Sep 24;373(13):1195-206 - PubMed

Publication Types