Display options
Share it on

Mol Biol Cell. 2016 Sep 28; doi: 10.1091/mbc.E16-03-0189. Epub 2016 Sep 28.

Arl13b regulates Shh signaling from both inside and outside the cilium.

Molecular biology of the cell

Laura E Mariani, Maarten F Bijlsma, Anna A Ivanova, Sarah K Suciu, Richard A Kahn, Tamara Caspary

Affiliations

  1. *Department of Human Genetics, Emory University, Atlanta, GA, USA Neuroscience Graduate Program, Emory University, Atlanta, GA, USA.
  2. Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Amsterdam, The Netherlands.
  3. Department of Biochemistry, Emory University, Atlanta, GA, USA.
  4. *Department of Human Genetics, Emory University, Atlanta, GA, USA Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA.
  5. *Department of Human Genetics, Emory University, Atlanta, GA, USA [email protected].

PMID: 27682584 PMCID: PMC5170560 DOI: 10.1091/mbc.E16-03-0189

Abstract

The regulatory GTPase Arl13b localizes to primary cilia, where it regulates Sonic hedgehog (Shh) signaling. Missense mutations in ARL13B can cause the ciliopathy Joubert syndrome, while the mouse null allele is embryonic lethal. We used mouse embryonic fibroblasts as a system to determine the effects of Arl13b mutations on Shh signaling. We tested a total of seven different mutants, three JS-causing variants, two point mutants predicted to alter guanine nucleotide handling, one that disrupts cilia localization, and one that prevents palmitoylation and thus membrane binding, in assays of transcriptional and non-transcriptional Shh signaling. We found that mutations disrupting Arl13b's palmitoylation site, cilia localization signal, or GTPase handling altered the Shh response in distinct assays of transcriptional or non-transcriptional signaling. In contrast, JS-causing mutations in Arl13b did not affect Shh signaling in these same assays, suggesting these mutations result in more subtle defects, likely affecting only a subset of signaling outputs. Finally, we show that restricting Arl13b from cilia interferes with its ability to regulate Shh-stimulated chemotaxis, despite previous evidence that cilia themselves are not required for this non-transcriptional Shh response. This points to a more complex relationship between the ciliary and non-ciliary roles of this regulatory GTPase than previously envisioned.

© 2016 by The American Society for Cell Biology.

References

  1. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3301-6 - PubMed
  2. Science. 1997 Aug 22;277(5329):1109-13 - PubMed
  3. Mol Biol Cell. 2011 Sep;22(18):3289-305 - PubMed
  4. Nature. 2005 Oct 13;437(7061):1018-21 - PubMed
  5. Dev Cell. 2007 May;12 (5):767-78 - PubMed
  6. J Biol Chem. 1994 Jul 22;269(29):18937-42 - PubMed
  7. PLoS Genet. 2005 Oct;1(4):e53 - PubMed
  8. Sci Signal. 2012 Aug 21;5(238):ra60 - PubMed
  9. Mol Biol Cell. 2006 May;17(5):2476-87 - PubMed
  10. Proc Natl Acad Sci U S A. 2012 Dec 26;109 (52):21354-9 - PubMed
  11. J Biol Chem. 2007 Jun 15;282(24):17568-80 - PubMed
  12. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):E73-80 - PubMed
  13. Development. 2002 Oct;129(20):4753-61 - PubMed
  14. J Biol Chem. 1994 Jan 14;269(2):1437-48 - PubMed
  15. Nat Rev Mol Cell Biol. 2011 Jun;12(6):362-75 - PubMed
  16. J Cell Biol. 2008 Sep 22;182(6):1039-44 - PubMed
  17. J Cell Biol. 2010 Mar 22;188(6):953-69 - PubMed
  18. EMBO J. 2009 Feb 4;28(3):183-92 - PubMed
  19. J Biol Chem. 2001 Jun 22;276(25):22826-37 - PubMed
  20. FASEB J. 2004 Dec;18(15):1834-50 - PubMed
  21. Nat Commun. 2014 Nov 18;5:5482 - PubMed
  22. Development. 2009 Dec;136(23):4033-42 - PubMed
  23. Development. 2012 Nov;139(21):4062-71 - PubMed
  24. Methods Enzymol. 2005;404:453-67 - PubMed
  25. Science. 2007 Jul 20;317(5836):372-6 - PubMed
  26. Nature. 1996 Nov 14;384(6605):176-9 - PubMed
  27. Orphanet J Rare Dis. 2014 May 05;9:72 - PubMed
  28. Nature. 2007 Nov 29;450(7170):717-20 - PubMed
  29. J Cell Biol. 2010 Jun 14;189(6):1039-51 - PubMed
  30. Nature. 2003 Nov 6;426(6962):83-7 - PubMed
  31. Elife. 2015 Nov 09;4:null - PubMed
  32. J Cell Sci. 2014 Jun 15;127(Pt 12):2709-22 - PubMed
  33. J Biol Chem. 2014 Apr 18;289(16):11111-21 - PubMed
  34. Development. 2008 Aug;135(15):2489-503 - PubMed
  35. Development. 2008 Nov;135(21):3531-41 - PubMed
  36. Dev Biol. 2011 Jul 1;355(1):43-54 - PubMed
  37. FEBS Lett. 2009 Dec 3;583(23):3872-9 - PubMed
  38. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  39. Biochem Biophys Res Commun. 2008 Aug 15;373(1):119-24 - PubMed
  40. Cell Signal. 2007 Dec;19(12 ):2596-604 - PubMed
  41. Mol Biol Cell. 2011 Dec;22(23 ):4694-703 - PubMed
  42. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8320-5 - PubMed
  43. Am J Hum Genet. 2008 Aug;83(2):170-9 - PubMed
  44. Mol Cell Biol. 1988 Aug;8(8):3235-43 - PubMed
  45. Cold Spring Harb Perspect Biol. 2010 Mar;2(3):a001784 - PubMed
  46. Small GTPases. 2010 Jul;1(1):2-27 - PubMed
  47. Nature. 2000 Aug 31;406(6799):1005-9 - PubMed
  48. Am J Hum Genet. 2014 Jan 2;94(1):62-72 - PubMed
  49. FEBS Lett. 2000 Dec 29;487(2):252-6 - PubMed
  50. J Cell Sci. 2006 Apr 1;119(Pt 7):1383-95 - PubMed
  51. PLoS Genet. 2013;9(12):e1003977 - PubMed
  52. J Biol Chem. 1988 Jun 15;263(17):8282-7 - PubMed
  53. Proc Natl Acad Sci U S A. 2012 Nov 27;109 (48):19691-6 - PubMed
  54. Development. 2004 Aug;131(16):4085-93 - PubMed
  55. AJNR Am J Neuroradiol. 2007 Nov-Dec;28(10):1929-33 - PubMed
  56. Dev Dyn. 2008 Aug;237(8):2030-8 - PubMed
  57. Science. 1996 Feb 9;271(5250):810-2 - PubMed
  58. J Child Neurol. 1999 Oct;14(10):655-9; discussion 669-72 - PubMed
  59. Hum Mutat. 2014 Jan;35(1):137-46 - PubMed
  60. Traffic. 2013 Jun;14(6):636-49 - PubMed
  61. J Cell Biol. 1994 Feb;124(3):289-300 - PubMed
  62. Dev Cell. 2012 Nov 13;23(5):925-38 - PubMed
  63. Cell. 2003 Apr 4;113(1):11-23 - PubMed
  64. J Biol Chem. 2012 Nov 16;287(47):39538-53 - PubMed
  65. PLoS Genet. 2014 Dec 11;10(12):e1004866 - PubMed
  66. Eur J Hum Genet. 2015 May;23(5):621-7 - PubMed

Publication Types

Grant support